The Discrete Model for the System of the Myocardium and Coronary Vessels
DOI:
https://doi.org/10.20535/1810-0546.2017.1.90044Keywords:
Thermogram, Myocardium, Temperature distribution, Vascular pathologyAbstract
Background. The numerical heat transfer model for a system of myocardium coronary vessels is considered.
Objective. The goal is to develop a discrete model for the physical system of myocardium and coronary vessels that would make it possible to explore the process of hypo- and hyperthermia with cardiopulmonary bypass.
Methods. To solve the differential equation of heat conduction in the MSC Sinda thermal system the network method (TNM – Thermal Network Method) is used, in which system of heat equations is presented in the form of cellular-centered nodes and resistances between the nodes using the finite difference method. In constructing the model of myocardial in the MSC Sinda system the thermal contact between three-dimensional bodies is implemented – the myocardium, coronary arteries, a liquid cooling of heart.
Results. Implementation of the model of heat exchange in the MSC Sinda system for infarction cooling process gives on the final process step in establishing the heat balance the temperature difference at the boundary between the myocardium and coronary vessels not more than 0,5 °C. However, in the areas of the myocardium that are removed from the coronary vessels the temperature difference exceeds 1,0 °C. The use of additional cooling for hearts allows for the cooling of myocardium with using of ice surface, that provides the unevenness reduction of the heart temperature during its cooling with cardiopulmonary bypass. This result allows exploring the dynamics of the process of hypo- and hyperthermia with cardiopulmonary bypass.
Conclusions. The discrete 3D-model of heat transfer in the layer structure of the myocardium and coronary vessels allows us to investigate the process of hypo- and hyperthermia with cardiopulmonary bypass. The simulation results also make it possible to perform the analysis of the temperature distribution on the surface of the myocardium provided free convection of heat between the layers.
References
J.H. Lienhard IV and J.H. Lienhard V, A Heat Transfer Textbook. Cambridge, UK: Phlogiston Press, 2016.
J.R. Howell et al., Thermal Radiation Heat Transfer. New York: CRC Press, Taylor & Francis Group, 2011.
P. Moin, Fundementals of Engineering Numerical Analysis. New York: Cambridge University Press, 2010.
A.K Oppenheim, “Radiation analysis by the network method”, Trans. ASME, pp. 54, 1954.
Astrium, SINDA User Manual, ver. 3.2, 2003.
I.U. Khudetsky et al., “Use of thermal imaging for control of the process hypothermia cardiac”, The Polish J. Appl. Sci., vol. 1, no. 3, pp. 93–96, 2015.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 NTUU KPI Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work