Modeling of Flooding in the Channel of Contact Devices

Ihor Kuzmenko, Alexandre Gourjii


Background. Contact economizers for recuperation of waste gases use hydraulic and aerodynamic flows and require a deeper understanding of their physical phenomena. So, the problem of hydrodynamics of common air flow and water film in channels of regular packing of contact economizers is important.

Objective. Finding dependencies between water film and air flow at critical modes of coolant flow in the contact heat mass transfer devices with a regular packing containing a system of vertical channels.

Methods. The goal is achieved by formulating and solving analytical model of stationary flowing of incompressible viscous liquids: water film and air. The model is described by the Navier–Stokes equation, reduced to a system of ordinary differential equations for viscous flow in a cylindrical coordinate system.

Results. It is shown that at the interface (for countercurrent movement of air and water film) there is air flow near water film that is moving down along with a water film. The thickness of the air-flow moving down near the interface (for countercurrent movement of air and water film), depends on the pressure gradient which prevents the gravitational running-off of the film. At a certain value of the pressure gradient the film stops at the interface of phases and the two-phase flow enters the mode of the film hanging. A further increasing of the pressure gradient at the film hanging mode causes the movement of the water film and air near the film layer vertically upwards. In this case, at the interface (for countercurrent movement) there is a film flow near the film layer moving in the direction of air flow.

Conclusions. Dimensionless values of the air velocity at movement flipping, film hanging, and flooding depending on the channel radius and Reynolds number values are established.


Countercurrent flow; Interfacial surface; Model; Flooding; Water film


J. Hewitt and N.H. Taylor, Annular Two-Phase Flows. Moscow, Russia: Jenergija, 1974 (in Russian).

I. Kuzmenko, “Hydrodynamics and heat-mass transfer in the counterflow contact evaporator with corrugated mesh packs”, Ph.D. dissertation, Heat Energy Department, NTUU KPI, 2003 (in Ukrainian).

V.M. Ramm, Gase Absorption. Moscow, SU: Himija, 1966 (in Russian).

J.N. Tilton, Fluid and Particle Dynamics, in Perry’s Chemical Engineers’ Handbook, Section 6, 8th ed. McGraw-Hill, 2008, pp. 30–51.

R. Billet and M. Schultes, “Fluid dynamics and mass transfer”, Total. Chem. Eng. Tech., 1995, vol. 18, pp. 371–379. doi: 10.1002/ceat.270180602

A.A. Sidyagin et al., “Hydraulic resistance of a modular heat-mass transfer packing”, Sovremennye Problemy Nauki i Obrazovanija, no. 6, pp. 21–28, 2014 (in Russian).

T.M. Farakhov et al., “Hydraulic characteristics of new highly effective irregular heat-mass transfer packings”, Neftegazovoe Delo, no. 2, pp. 58–65, 2011 (in Russian).

L.I. Sedov, Continuum Mechanics, vol. 1. Moscow, SU: Nauka, 1970 (in Russian).

G. Schlichting, Theory of Boundary Layer. Moscow, SU: Nauka, 1974 (in Russian).

L.P. Feldman et al., Numerical Methods in Computer Science. Kyiv, Ukraine: Publishing Group BHV, 2006 (in Ukrainian).

GOST Style Citations

  1. Хьюитт Дж., Холл-Тейлор Н. Кольцевые двухфазные течения / Пер. с англ. – М.: Энергия, 1974. – 407 с.
  2. Кузьменко І.М. Гідродинаміка та тепломасообмін в протитоковому контактному випаровувачі з сітчастою гофрованою насадкою: Дис. … канд. техн. наук. – К., 2003. – 151 с.
  3. Рамм В.М. Абсорбция газов – М.: Химия, 1966. – 767 с.
  4. Tilton J.N. Fluid and Particle Dynamics // Perry’s Chemical Engineers’ Handbook. Section 6. – 8th ed. – McGraw-Hill, 2008. – P. 30–51.
  5. Billet R., Schultes M. Fluid dynamics and mass transfer // Total. Chem. Eng. Tech. – 1995. – 18. – P. 371–379.
  6. Сидягин А.А., Степыкин А.В., Балахнин И.А. Гидравлическое сопротивление блочно-модульной тепло-массообменной насадки // Современные проблемы науки и образования. – 2014. – № 6. – С. 21–28.
  7. Фарахов Т.М., Башаров М.М., Шигапов И.М. Гидравлические характеристики нових высокоэффективных нерегулярних тепломассообменных насадок // Нефтегазовое дело. – 2011. – № 2. – С. 58–65.
  8. Седов Л.И. Механика сплошной среды. – М.: Наука, 1970. – Т. 1. – 492 с.
  9. Шлихтинг Г. Теоpия погpаничного слоя. – М.: Наука, 1974. – 712 c.
  10. Фельдман Л.П., Петренко А.І., Дмитрієва О.А. Чисельні методи в інформатиці – К.: Видавнича група BHV, 2006. – 480 с.



  • There are currently no refbacks.