Application of the Digital Orthogonal Method of Phase Measurement for Characteristics Materials Definition by Ultrasonic Method

Галина Анатоліївна Богдан, Анатолій Георгійович Протасов

Abstract


Background. The article is devoted to the problem of accuracy increasing for physical-mechanical characteristics definition of powdered materials at the stage of their manufacture using ultrasonic testing.

Objective. The realization of the phase method of time interval measurement in a system of ultrasonic testing of powdered materials in order to increase accuracy of definition their physical-mechanical characteristics is done.

Methods. It was proposed to use digital orthogonal method for definition of the phase shift between signals to reach the aim. Computing simulation in Matlab system for definition of the signals phase shift and estimation of its inaccuracy of measurements was carried out.

Results. As the result of this investigation it was defined the optimal parameters of the principal element of a measuring system for the phase shift – ADC which was the main source of errors and essentially influenced the measurement accuracy.

Conclusions. Experimental investigations on well known materials indicated effectiveness of application of the digital orthogonal method which allowed defining the velocity of ultrasound propagation in a solid medium with accuracy less than 1 %.


Keywords


Phase shift; Digital orthogonal method

References


D.V. Grashhenkov and L.V. Chursova, “Strategy of composition and functional materials development”, Aviacionnye Materialy i Tehnologii, no. 5, pp. 231–242, 2012 (in Russian).

V.P. Babak et al., “Automatic system for measurement of periodic signal characteristics based on Labview technology”, Avto­matika. Avtomatizacija. Jelektrotehnicheskie Kompleksy i Sistemy, no. 1, pp. 61–68, 2004 (in Ukranian).

F.C. Campbell, Structural Composite Materials. Ohio: ASM International, 2010.

S. Banerjee and B.K. Shah, “Characterization of Industrial Materials”, in Material Characterization Techniques Principals and Applications, G. Sridhar et al., eds., 1999, pp. 1–15.

V.V. Murav'ev et al., Acoustic Speed and Steels and Alloys Structure. Novosibirsk, Russian Federation: Nauka, 1996, 184 p. (in Russian).

Ju.G. Bezymjannyj et al., “Ultrasound usage at working-off technology for powdered material receiving”, in Proc. KONSO­NANS-2011. Acoustical Symp., 2011, pp. 28–33 (in Russian).

I.M. Poletika et al., “About ultrasonic check of imperfections of hot-rolled steel mechanical properties”, Zhurnal Tehni­cheskoj Fiziki, vol. 71, iss. 3, pp. 37–40, 2001 (in Russian).

R.M. Galagan and G.A Bohdan, “Errors analysis at velocimetry of ultrasonic wave spreading in multiphase powdered mate­rials. Part 1: Influence of a subjective error”, Vіsnik NTUU KPІ. Ser. Priladobuduvannja, no. 49 (1), pp. 53–60, 2015 (in Russian).

M.K. Chmyh, Digital Phasometry. Moscow, Russian Federation: Radio i Svjaz', 1993 (in Russian).

W.S. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd ed. California Technical Publishing, 1999. Available: http://www.dspguide.com or http6//www.analog.com


GOST Style Citations


  1. Гращенков Д.В., Чурсова Л.В. Стратегия развития композиционных и функциональных материалов // Авиационные материалы и технологии. – 2012. – № 5. – С. 231–242.

  2. Автоматизована система вимірювань фазових характеристик періодичних сигналів на базі технології Labview //  В.П. Бабак, В.В. Дегтярьов, Ю.В. Куц, Л.М. Щербак // Автоматика. Автоматизация. Электротехнические комплексы и системы. –  2004. – № 1. – С. 61–68.

  3. Campbell F.C. Structural Composite Materials. – Ohio: ASM International, 2010. – 612 p.

  4. Banerjee S. and Shah B.K. Characterization of industrial materials / G. Sridhar, S. Ghosh. Chowdhary, N.G. Goswami, Eds. // Material Characterization Techniques – Principals and Applications. – 1999. – P. 1–15.

  5. Муравьев В.В., Зуев Л.Б., Комаров К.Л. Скорость звука и структура сталей и сплавов. – Новосибирск: Наука, 1996. – 184 c.

  6. Использование ультразвука при отработке технологии получения порошкового материала / Ю.Г. Безымянный, Г.А. Бог­дан, А.Н. Колесников и др. // КОНСОНАНС-2011. Акустический симпозиум. – 2011. – С. 28–33.

  7. Об ультразвуковом контроле неоднородности механических свойств горячекатаной стали / И.М. Полетика, Н.А. Егорова, О.В. Куликова и др. // Журнал технической физики. – 2001. – 71, вып. 3. – С. 37–40.

  8. Галаган Р.М., Богдан Г.А. Анализ погрешностей измерения скорости распространения ультразвуковой волны в многофазных порошковых материалах. Часть 1: Влияние субъективной погрешности // Вісник НТУУ “КПІ”. Сер. Приладобудування. – 2015. – № 49 (1). – С. 53–60.

  9. Чмых М.К. Цифровая фазометрия. – М.: Радио и связь, 1993. – 184 с.

  10. Smith S.W. The Scientist and Engineer’s Guide to Digital Signal Processing. – 2nd ed. – California Technical Publishing, 1999. – Available: http://www.dspguide.com or http6//www.analog.com




DOI: https://doi.org/10.20535/1810-0546.2016.2.66026

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 NTUU KPI