Bounded Operators of Stochastic Differentiation on Spaces of Nonregular Generalized Functions in the Lévy White Noise Analysis

Микола Олександрович Качановський

Abstract


Background. Operators of stochastic differentiation play an important role in the Gaussian white noise analysis. In particular, they can be used in order to study properties of the extended stochastic integral and of solutions of normally ordered stochastic equations. Although the Gaussian analysis is a developed theory with numerous applications, in problems of mathematics not only Gaussian random processes arise. In particular, an important role in modern researches belongs to Lévy processes. So, it is necessary to develop a Lévy analysis, including the theory of operators of stochastic differentiation.

Objective. During recent years the operators of stochastic differentiation were introduced and studied, in particular, on spaces of regular test and generalized functions and on spaces of nonregular test functions of the Lévy analysis. In this paper, we make the next step: introduce and study such operators on spaces of nonregular generalized functions.

Methods. We use, in particular, the theory of Hilbert equipments and Lytvynov’s generalization of the chaotic representation property.

Results. The main result is a theorem about properties of operators of stochastic differentiation.

Conclusions. The operators of stochastic differentiation are considered on the spaces of nonregular generalized functions of the Lévy white noise analysis. This can be interpreted as a contribution in a further development of the Lévy analysis. Applications of the introduced operators are quite analogous to the applications of the corresponding ope­rators in the Gaussian analysis.

Keywords


Operator of stochastic differentiation; Extended stochastic integral; Hida stochastic derivative; Lévy process

Full Text:

PDF

GOST Style Citations


  1. Bertoin J. Lévy Processes. – Cambridge: Cambridge University Press, 1996. – X+265 p.

  2. Kachanovsky N.A. On extended stochastic integrals with respect to Lévy processes // Carpatian Math. Publ. – 2013. – 5, № 2. – P. 256–278.

  3. Lytvynov E.W. Orthogonal decompositions for Lévy processes with an application to the gamma, Pascal, and Meixner processes // Infin. Dimens. Anal. Quantum Probab. Relat. Top. – 2003. – 6, № 1. – P. 73–102.

  4. Itô K. Spectral type of the shift transformation of differential processes with stationary increments // Trans. Am. Math. Soc. – 1956. – 81. – P. 253–263.

  5. Di Nunno G., Oksendal B., Proske F. White noise analysis for Lévy processes // J. Funct. Anal. – 2004. – 206, № 1. – P. 109–148.

  6. Di Nunno G., Oksendal B., Proske F. Malliavin Calculus for Lévy Processes with Applications to Finance. – Berlin, Heidelberg: Universitext, Springer-Verlag, 2009. – XIII+417 p.

  7. Kachanovsky N.A. Extended stochastic integrals with respect to a Lévy process on spaces of generalized functions // Math. Bull. Taras Shevchenko Sci. Soc. – 2013. – 10. – P. 169–188.

  8. Dyriv M.M., Kachanovsky N.A. Stochastic integrals with respect to a Lévy processes and stochastic derivatives on spaces of regular test and generalized functions // Naukovi Visti NTUU “KPI”. – 2013. – № 4. – P. 27–30.

  9. Ustunel A.S. An Introduction to Analysis on Wiener Space. – Berlin, Heidelberg: Lecture Notes in Math., 1610, Springer-Verlag, 1995. – X+106 p.

  10. Benth F.E. The Gross derivative of generalized random variables // Infin. Dimens. Anal. Quantum Probab. Relat. Top. – 1999. – 2, № 3. – P. 381–396.

  11. Dyriv M.M., Kachanovsky N.A. Operators of stochastic differentiation on spaces of regular test and generalized functions in the Lévy white noise analysis // Naukovi Visti NTUU “KPI”. – 2014. – 81, № 4. – P. 36–40.

  12. Dyriv M.M., Kachanovsky N.A. On operators of stochastic differentiation on spaces of regular test and generalized functions of Lévy white noise analysis // Carpatian Math. Publ. – 2014. – 6, № 2. – P. 212–229.

  13. Kachanovsky N.A. Operators of stochastic differentiation on spaces of nonregular test functions of Lévy white noise analysis // Methods Funct. Anal. Topol. – 2015. – 21, № 4. – P. 336–360.

  14. Berezansky Yu.M., Sheftel Z.G., Us G.F. Functional Analysis. Vol. 2. – Basel, Boston, Berlin: Birkhauser, 1996. – XVII+312 p.

  15. Kachanovsky N.A. On an extended stochastic integral and the Wick calculus on the connected with the generalized Meixner measure Kondratiev-type spaces // Methods Funct. Anal. Topol. – 2007. – 13, № 4. – P. 338–379.




DOI: https://doi.org/10.20535/1810-0546.2016.4.60347

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 NTUU KPI