Bounded Operators of Stochastic Differentiation on Spaces of Nonregular Generalized Functions in the Lévy White Noise Analysis
DOI:
https://doi.org/10.20535/1810-0546.2016.4.60347Keywords:
Operator of stochastic differentiation, Extended stochastic integral, Hida stochastic derivative, Lévy processAbstract
Background. Operators of stochastic differentiation play an important role in the Gaussian white noise analysis. In particular, they can be used in order to study properties of the extended stochastic integral and of solutions of normally ordered stochastic equations. Although the Gaussian analysis is a developed theory with numerous applications, in problems of mathematics not only Gaussian random processes arise. In particular, an important role in modern researches belongs to Lévy processes. So, it is necessary to develop a Lévy analysis, including the theory of operators of stochastic differentiation.
Objective. During recent years the operators of stochastic differentiation were introduced and studied, in particular, on spaces of regular test and generalized functions and on spaces of nonregular test functions of the Lévy analysis. In this paper, we make the next step: introduce and study such operators on spaces of nonregular generalized functions.
Methods. We use, in particular, the theory of Hilbert equipments and Lytvynov’s generalization of the chaotic representation property.
Results. The main result is a theorem about properties of operators of stochastic differentiation.
Conclusions. The operators of stochastic differentiation are considered on the spaces of nonregular generalized functions of the Lévy white noise analysis. This can be interpreted as a contribution in a further development of the Lévy analysis. Applications of the introduced operators are quite analogous to the applications of the corresponding operators in the Gaussian analysis.Downloads
Published
Issue
Section
License
Copyright (c) 2017 NTUU KPI Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work