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BOUNDED OPERATORS OF STOCHASTIC DIFFERENTIATION ON SPACES OF NONREGULAR
GENERALIZED FUNCTIONS IN THE LEVY WHITE NOISE ANALYSIS

Background. Operators of stochastic differentiation play an important role in the Gaussian white noise analysis. In
particular, they can be used in order to study properties of the extended stochastic integral and of solutions of nor-
mally ordered stochastic equations. Although the Gaussian analysis is a developed theory with numerous applications,
in problems of mathematics not only Gaussian random processes arise. In particular, an important role in modern re-
searches belongs to Lévy processes. So, it is necessary to develop a Lévy analysis, including the theory of operators of
stochastic differentiation.

Objective. During recent years the operators of stochastic differentiation were introduced and studied, in particular,
on spaces of regular test and generalized functions and on spaces of nonregular test functions of the Lévy analysis. In
this paper, we make the next step: introduce and study such operators on spaces of nonregular generalized functions.
Methods. We use, in particular, the theory of Hilbert equipments and Lytvynov’s generalization of the chaotic
representation property.

Results. The main result is a theorem about properties of operators of stochastic differentiation.

Conclusions. The operators of stochastic differentiation are considered on the spaces of nonregular generalized func-
tions of the Lévy white noise analysis. This can be interpreted as a contribution in a further development of the Lévy
analysis. Applications of the introduced operators are quite analogous to the applications of the corresponding ope-
rators in the Gaussian analysis.

Keywords: operator of stochastic differentiation; extended stochastic integral; Hida stochastic derivative; Lévy process.

Introduction

Denote R.:=[0,+»). Let L=(L),.g be a
Lévy process, i.e., a random process on R, with

stationary independent increments and such that
Ly=0 (see, e.g., [1] for details), without Gaussian

part and drift. In [2] the extended Skorohod sto-
chastic integral with respect to L and the cor-
responding Hida stochastic derivative on the space

of square integrable random variables (I?) were

constructed in terms of Lytvynov’s generalization
of the chaotic representation property (CRP) [3],
some properties of these operators were estab-
lished; and it was shown that the above-mentioned
integral coincides with the well-known extended
stochastic integral with respect to a Lévy process,
constructed in terms of It6’s generalization of the
CRP [4] (see, e.g., [5, 6]). In [7, 8] the stochastic
integral and derivative were extended to spaces of
test and generalized functions that belong to rig-
gings of (L2) , this gives a possibility to extend an
area of their possible applications. Together with
the mentioned operators, it is natural to introduce
and to study so-called operators of stochastic dif-
ferentiation in the Lévy white noise analysis, by
analogy with the Gaussian analysis [9, 10]. Such
operators are closely related with the extended sto-

chastic integral with respect to a Lévy process and
with the corresponding Hida stochastic derivative
and, by analogy with the “classical case”, can be
used, in particular, in order to study properties of
the extended stochastic integral and properties of
solutions of so-called normally ordered stochastic
equations. In [11, 12] the operators of stochastic
differentiation on spaces belonging to a so-called
regular parametrized rigging of (L2) [7] were intro-
duced and studied. But, in connection with some
problems of the stochastic analysis, sometimes it
can be necessary to consider another, a so-called
nonregular rigging of (I*) [7] and various opera-

tors on spaces (of nonregular test and generalized
functions) belonging to this rigging. In [13] opera-
tors of stochastic differentiation were introduced
and studied on the spaces of nonregular test func-
tions of the Lévy white noise analysis. In particu-
lar, it was shown that these operators are the re-
strictions to the above-mentioned spaces of the
corresponding operators on (Z°). The next natural

step consists in introduction and study of operators
of stochastic differentiation on the spaces of non-
regular generalized functions. But, unfortunately,

the operators of stochastic differentiation on (Z?)
(in the same way as the Hida stochastic derivative)
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cannot be naturally continued to the above-
mentioned spaces. Nevertheless, one can introduce
on these spaces linear operators with properties
quite analogous to properties of the operators of
stochastic differentiation. These linear operators will
be called the operators of stochastic differentiation
on the spaces of nonregular generalized functions.
In the present paper we introduce these operators
and establish some their properties.

Problem definition

The aim of this paper is to introduce the opera-
tors of stochastic differentiation on the spaces of
nonregular generalized functions of the Lévy white
noise analysis; and to establish some properties of
these operators.

Preliminaries

In this paper we deal with a real-valued lo-
cally square integrable Lévy process L on R,

without Gaussian part and drift. As is well known,
the characteristic function of such a process is

E[eiuL,] _ eXp[l_[R (eiux —1—iux)v(dx)] , (1)

where v is the Lévy measure of L, F denotes the
expectation. We assume that v is a Radon measure
whose support contains an infinite nhumber of points,
v({0}) =0, there exists ¢ >0 such that

JR x2e*M(dx) < 0, and IR x>v(dx) = 1.

Let us define a measure of the white noise of
L. Let D denote the set of all real-valued infnite-
differentiable functions on R, with compact sup-
ports. As is well known, D can be endowed by the
projective limit topology generated by some Sobo-
lev spaces (more details are given below, a detailed
presentation is given in, e.g., [14]). Let D' be the
set of linear continuous functionals on D. For
we D and ¢ € D denote (w,) = o(p); note that

one can understand (-,-) as the dual pairing genera-
ted by the scalar product in the space L2(R+) of

square integrable with respect to the Lebesgue
measure real-valued functions on R, . The notation

(-~ will be preserved for dual pairings in tensor

powers of spaces.
Definition ([3]). A probability measure p on

(D',C(D")), where C denotes the cylindrical o-
algebra, with the Fourier transform

[, € udo)

=exp[ j&xk(ef"’(”)x —1-ip(u)x)duv(dx)],p € D, (2)

is called the Lévy white noise measure.
Denote ([?):= [*(D',C(D'),1) the space of
real-valued square integrable with respect to pu

functions on D'; let also H = I*(R,). Let fe H
and a sequence (¢, € D),y converge to f in H
as k — o. One can show [2,3,5,6] that (o, f) =

=(*)- I%im(o, @) is well defined as an element of

(I?) . Let us consider (o, lig.s) € (), te R, (here

and below 1, denotes the indicator of a set A4). It
follows from (1) and (2) that ({o, Lio.)))icr, can be

identified with a Lévy process L.
Consider Lytvynov’s generalization of the

CRP (see [3] for details). Denote by ® the sym-
metric tensor product. For me Z, .= N U{0} set

! ,
P, = {(p(m) =>(@™,¢") o D" e D%, < m} .
k=0

Denote by P, the closure of P, in (I?). Let for
me N P, be defined from the condition P, =
=P, ®P, _,,P,:=P . Let f™ecD®, meZ,.
Denote by : (c®", f (my . the orthogonal projection
of a monomial (c®”, f™) onto P,,. Let us introdu-
ce scalar products ()., on D®", meZ (D*" =R),

by setting for £, g(’")eD®’”

(f, g™

L1 (@®m, ) 5 (0P, g™y : w(dw),

m!o

and let |-|
by Hm

ext

ot D€ the corresponding norms. Denote

me Z, , the completions of D®" with
For F'™ ¢ H™ we

respect to the norms ||, . oxt

def )
define a Wick monomial :(o®", F™y: =(I?)-

—llim (¥ fMy:,  here for each keN
—wo

as k —»o in H™

™ e D" and £ — F
(well-posedness of this definition can be proved by
the method of “mixed sequences”). One can show [3]
that F e (%) if and only if there is a unique se-
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me Z., such that

quence of kernels F'™ ¢ H™ S

ext »
F =3 :(c®" F™My:
m=0
with

E|FP=|FItp,=[, | F@F wde) =Y m!| F™ [ <.
m=0

ext —
ot that
consists of “vanishing on diagonals” elements [2, 3].

Note that H) = H and for me N\{l} one can
identify H ®m \with a proper subspace of H™

In this sense the space H™ is an extension of H®" .

Denote by T the set of indexes 1= (1,1,),
where 1, e N, 1, : R, = [l,+0) is an infinite dif-
ferentiable function. Let H_, 1T, be the Sobo-
lev space on R, of order 1, weighted by the func-

(e.g., [14]). It is well known that
D=prlim__; H. (moreover, D% = pr lim__, HT®’”,
me N ), and for each teT H_ is densely and

tion 1,

continuously embedded into H. Therefore one can
consider a chain

DoH _oH>H oD,

where H__, ©1eT, are the spaces dual of H,
with respect to H . Note that by the Schwartz
theorem (e.g., [14]) D' = UTETH_T.

By analogy with [15] (see also [3]) one can
show that the measure p is concentrated on H_.
with some ©eT, ie., wH_;)=1. So, excepting

from T some indexes, we will assume, in what fol-
lows, that for each te 7 w(H_.)=1. Further, de-

note the norms in H, and its tensor powers by
|-],. It is shown in [7] that, again excepting from

T some indexes, we obtain the next statement.
Proposition. For each te7 and for each

me N the space HT®’" is densely and continu-
Hm

ext »

exists ¢(t) >0 such that for all f e Hfj"’ we
have | £ P, <m!e()™| fO 2.

ext —
Denote

ously embedded into the space and there

N‘ ~
By ::{ f= j ", fy, [ e DP" N, e Z+}C(L2) .
m=0

Accept on default ge Z,, t1eT; set H?O :=R;
and define scalar products (., )eg ON By by setting

for f,ge By

min(N,,N,)
> (m)2(f, g .,

m=0

(f,8)eg =

(see [13] for details). Let [|-[|,, be the correspon-

ding norms. Now we define Kondratiev spaces of
nonregular ftest functions (H.), as completions of

By with respect to the norms |-l ,. As is easy to
see, fe(H,), if and only if f can be presented
in the form

F= (e pmy g e (3

m=0

with || £[{,),= 2 (m)?27" | f™ <o
m=0

Further, it is proved in [7] that for each
teT there exists ¢,(t) € Z, such that for each

qeZ,, q=>qy(v), the space (H,), is densely and

continuously embedded into (Z?). In view of this
statement for te 7T and g > gy(t) one can con-
sider a chain

(H_.).q > (L) > (H),, “4)

where (H_,)_, is the space dual of (H.), with re-
spect to (L2) . Chain (4) is called a nonregular rig-
ging of the space (I*). The negative spaces (H_,),

of such chains (with various v and q) are called

Kondratiev spaces of nonregular generalized functions.
Now let us describe natural orthogonal bases
in the spaces (H_.)_,. In view of the Proposition

formulated above let us consider chains
D™ S H™ S HM S H®" 5 D" me N (5)

(for m=0 set D'O=HO=H® &0 - p®._R),
where H™ and D'™ = U..r H'™ are the spaces
dual of H?’” and D®” with respect to H.

ext
Proposition ([7]). There exists a system of
generalized functions
(" Fy ie (H_) | FS e H me Z }

> ext ext

such that
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1) for F™ e HI < H™  (o®" FMy
Wick monomial;

2) any generalized function Fe(H_.)_, can

be presented as a formal series

F= YD) B e HY L (6)
m=0
that converges in (H_,)_,, i.e.,
IFIty ) = 2 2" 1B <o (D)
m=0

and any formal series (6) with finite norm (7) is a
generalized function from (HfT)fq ;

3) the dual pairing between F e (H_.)_, and
fe(H),
in (Z?), has the form

that is generated by the scalar product

U Dy = 2 mKEG S ™ e s (8)
m=0

e H™ and f" < H®" are the ker-
nels from decompositions (6) and (3) for F and
J respectively, (,-)., denotes the dual pairings
between elements of negative and positive spaces
from chains (5), these pairings are generated by the
scalar products in H{™

Following [13], we recall now a notion of the
extended stochastic integral on (H_)_,® H_,

First we note that there exists a system of orthogo-
nal in (H_ ) ,®H_  generalized functions

L) e (H ) (©H | F) e HY @ H,

me Z.} such that any Fe(H_ ) ,®H_,
presented as a convergent in this space series

where F

ext

meZ, .

can be

F™WeH™Q@H , (9)

> T ext,

F() = Z ROV

with | F Ry ) o = 32 | ED Py <.

m=0
Consider a family of chains

H™®H |

D" 5 H®" 5 H®" 5 H®" 5 D®" me N (10)
(as is well known (e.g., [14]), H®" and D"
_UteTH‘é’” are the spaces dual of H®”’ and

D®" with respect to H®": for m=0 all spaces
from (10) are equal to R by definition). Since the
spaces of test functions in chains (10) and (5) co-

incide, there exists a family of natural isomorphisms

U, : D™ — D®" such that for all F(" e D™
and f™ e D" (F(™ py U F, £ Tt is

to H™ are

isometric isomorphisms between the spaces H "

easy to see that the restrictions of U,

and Hﬁ’” Now we introduce an extended stochastic
integral J.o(u)c?Lu:(H ) ®H_—(H_.)_,

operator that is defined for
of form (9) as

as a line-

ar  continuous
F e (H_T)_q ®H

j F(udL, = Z (oOm+l pm)y.

cxt

here FUM =

(m+1)
ext -1

UL {Pr{(U,, @ DF™ )y e H

ext. ,Pris

the orthoprojector acting for each me Z, from
H®" ® H_
tor), 1 is the identity operator. It is shown in [13]
that this integral is an extension of the extended
Skorohod stochastic integral with respect to a Lévy
process L.

Unfortunately, the extended stochastic integral
with respect to a Lévy process cannot be naturally re-

stricted to the spaces of nonregular test functions.
More precisely, for fe(H,),®H c(H_) ,®H

to Hg’”” (the symmetrization opera-

_[ f(u) JLM is not necessary a nonregular test func-

tion. Nevertheless, one can introduce on each
space of nonregular test functions a linear operator
that has properties quite analogous to the proper-
ties of the above-mentioned integral. First we note

that for £ e H?’” ®H.c H™ ® H _ the abo-
(M, [y
belong to the spaces (H,), ® H, and form or-

ve-introduced generalized functions

thogonal bases in these spaces [13]. So, any
fe(H),®H, can be presented as
FO =P My fM e HE"Q H,, (1)
m=0

2
with ||f||(H) ®H,~ Z (m!)=21" |f(m) |H®'”®H -

m=0
Now we define a linear continuous operator
I:(H,),,®H —(H,), by setting for fe(H ), ®H,

of form (11) I(f):= i o®ml Fimy - here

Fm = pr £ ¢ HT®”’+1 , Pr is the orthoprojector
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acting for each me Z, from HT®”' ®H. to H?"”l

(the symmetrization operator). The well-posedness of
this definition is proved in [13].

Finally, as is well known, an important role in
the Lévy white noise analysis belongs to the Hida
stochastic derivative, which is the adjoint operator
of the extended stochastic integral. In terms of
Lytvynov’s generalization of the CRP this deriva-

tive is considered on (L2) [2], on the spaces of

regular test and generalized functions [11,12] and
on the spaces of nonregular test functions [7,13].
But, unfortunately, this operator has no a natural
extension to the spaces of nonregular generalized
functions. Nevertheless, one can define natural
analogs of the Hida stochastic derivative on the-
se spaces as operators adjoint to /. More exactly,
we define a linear continuous  operator

0.:(H_.) ,—~>(H_) ,,®H__ as the adjoint ope-
rator to I (3.=1"), ie., for all F e (H_,)., and

f € (H-:)q+l ® H-; <<é-F9f>>(L2)®H = <<Fa I(f)>>(L2) 5
here ({-,-)) ()oH denotes the dual pairing generated

by the scalar product in (L2)® H. A simple calculati-

on shows that 8. F = > (m+1) (o®", F™V () :,
m=0
here

Ft™0:= U, O (U Fig™) O e HE O H

ext ext

F{mDe gmD are the kernels from decomposition
(6) for F.

Operators of stochastic differentiation

As we said above, the operators of stochastic
differentiation on (Z?) [11,12] cannot be naturally
continued to the spaces of nonregular generalized
functions (because the kernels from decomposi-
tions (6) for elements of (H_,)_, belong to the

spaces wider than H{™ ). Nevertheless, one can in-

troduce on these spaces natural analogs of the
above-mentioned operators. We begin from a prepa-
Let FMeH™, fWeH®  nmeN,
m>n. We define a generalized partial pai-

ring  (F™ f(”)>ext e H™™ by setting for any

ext

g(m—n) c H?m—n

<<Fé()::l)9f(n)>ext5g(m_n)>ext :<F;:(xr:l)5f(n)®g(m_n)>ext N (12)

ration.

As is easy to verify by the generalized
Cauchy-Bunyakovsky inequality, this definition is
well-posed and

[CES s S el e < LS Ly LS 1 (13)

Definition. Let £ e H®" | n e N. We define the

operator of stochastic differentiation (D"o)(f™):
(H_,)_, - (H_)_, by the formula

~ 0 |
(DR P R, ), (1)
m=0 .

where F" e H'™ are the kernels from decompo-
sition  (6) for Fe(H_),. Also we denote

(Do) (f M) = (D'o)(f ).
By direct calculation with use (7) and (13)
one obtains the estimate

D" FYS ).,

2
_m( (m+n)!
<29"| £ max,,_,. [2 '"[( 1) j }HFH%H{)(,,

whence it follows that (D"0)(f™) is a well-
defined linear continuous (bounded) operator.
Consider properties of (D"o)(f™).

Theorem. 1) For k,...,k, € N, fj(kf) eH
jedl,...,m
(DS (- (D (D ) (AWM - N )
_ (Dkl+.4»+kmo)(fi(kl) ® . ® f”(lkm)) ]

®k;

T b

2) For the kernels

F{™ e H™ from decomposition (6) can be pre-

sented in a form

each Fe(H_ ),

1 .
B =— S E(D"F),
ie., foreach f\™e HT®’”
1 .
ot [ e =- S E(D"F)(S™)),
here Eo = {{o,])) ) is a generalized expectation.

3) The adjoin to D" operator has a form

(D) (F ™) =3 (™ g™ & f00y: e (), (15)
m=0



TEOPETWYHI TA NMPUKNAOHI MPOBNEMU MATEMATUKA 53

e H®" , and g™ e Hom
are the kernels from decomposition (3) for g.
4) Forall ge(H,),,, and [V e H,

where g€ (Hr)qu],

De)(fV) =1(g® fV)e(H,),. (16)

5) Forall Fe(H_)_, and f e H_ we have
(DF)(f V)= @.F, fOO) e (H_))_, i,

where (0.F, f(l)(-)) is a partial pairing, i.e., the
unique element of (H_ )_, ; such that for arbitrary

g€ (H'c)q+l
(R SO 2y = (OF.8® fOON 1oy

Formally &0 =(Do)(8), where & is the Dirac
delta-function.
6) Let Fe(H ). ,®H_, fV e H, . Then

(D[ FudL,)(f©)
= [(DF@)(fP)dL, +(F(), f0) e (H_) 41,
here ( F()), fV()) is a partial pairing.
Proof. 1) The application of the mathemati-

cal induction method.
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Conclusions

In this paper the operators of stochastic dif-
ferentiation are considered on the spaces of non-
regular generalized functions of the Lévy white
noise analysis; and some properties of these opera-
tors are established. This can be interpreted as a
contribution in a further development of the Lévy
analysis. In particular, using the introduced ope-
rators one can study some properties of the ex-
tended stochastic integral and of solutions of so-
called normally ordered stochastic equations. In
forthcoming papers we’ll consider elements of the
Wick calculus on the spaces of nonregular test and
generalized functions, the connection between the
Wick calculus and the stochastic differentiation
and integration, etc.
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M.O. KayaHoBcbkuiA

OBMEXEHI OMNEPATOPU CTOXACTUYHOIO ONSEPEHLIFOBAHHA HA MPOCTOPAX HEPEIMYNAPHUX Y3ATANIbHEHMX
®YHKLIM B AHANI3I BINOrO LWYMY NEBI

Mpo6nemaTtuka. OnepaTopu CTOXaCTUHHOIO AMdEPEHLIIOBaHHS rpatoTb BaXMBYy pofib Yy rayCCoOBOMY aHanisi 6inoro wymy. 3ok-
pemMa, BOHU MOXYTb BUKOPUCTOBYBATUCL ANS BUBYEHHS BNACTUBOCTEN PO3LUMPEHOr0 CTOXaCTUYHOrO iHTerpana Ta po3B’s3kiB HopMmarb-
HO BMOPSAKOBAHMX CTOXACTUYHMX PiBHAHBL. X0OY raycciB aHanis € po3BMHYTOI TEOPIiElo 3 YNCIIEHHVMM 3aCTOCYBaHHAMM, Y MaTemaTuy-
HMX 3adadvax BUHMKaKOTb He NULLe rayccoBi BUMaAKoBi npouecu. 3okpema, BaXnunea porb Y Cy4acHWUX AOCHIAXKEHHAX HanexXuTb npole-
cam JleBi. Tomy HeobxigHO po3byaoByBaTn aHani3 Jlesi, BkMoYaym Teopito onepaTopiB CTOXaCTUYHOIO AnepeHLitoBaHHS.

MeTa pocnigxeHHs. [1poTAromMm ocTaHHiIX POKIB onepaTopy CTOXacTUYHOro AundepeHuitoBaHHA Oynu yBeaeHi Ta BUBYEHI, 30Kpe-
Ma, Ha NPOCTOpax PerynsipHUX OCHOBHUX i y3aranbHeHUX (PYHKUIA Ta Ha NpocTopax HeperynspHUX OCHOBHUX OYHKLUIN aHanisy Jlesi. Y
Lin cTaTTi M1 pobUMO HaCTYMHUI KPOK: yBOAMMO Ta BMBYAEMO Taki orepaTtopu Ha MPOCTOpax HeperynapHuX yaranbHeHUX dyHKLiNA.

MeTtoauka peanisauii. M1 BUKOPUCTOBYEMO, 30KpEMa, TEOPIlO riNIbbepTOBUX OCHALLEHb Ta NUTBUHIBCbKE y3ararnbHEHHs BNacTu-
BOCTi XaOTUYHOrO po3knagy.

PesynbTatn pocnipkeHb. OCHOBHMM pe3ynbTaToM € Teopema Npo BacTUBOCTI ONepaTopiB CTOXacTUYHOro AndepeHLitoBaHHS.

BucHoBku. OnepaTtopy CTOXacCTU4HOTO AWdEepeHLiloBaHHA PO3rNAHYTO Ha MPOCTOpax HeperynsapHuWX ysararnbHeHWX yHKUin
aHanigy 6inoro wymy Jlesi. Lie MoxHa po3ymiTu ik BHECOK y nodanbLUnii po3BUTOK aHanidy Jlesi. 3acTocyBaHHsl BBEAEHMX ONepaTopiB €
LiifTKOM aHaroriYyHuMm1 3acToCyBaHHAM BiAMOBIAHMX ONepaTopiB y rayCCoBOMY aHanisi.

Kno4oBi cnoBa: onepatop CTOXaCcTUYHOIro AndepeHLitoBaHHS; pO3LUMPEHUIN CTOXACTUYHWUIA IHTErpan; ctoxacTuyHa noxigHa Xi-
au; npouec Jlesi.



TEOPETWYHI TA NMPUKNAOHI MPOBNEMU MATEMATUKA 55

H.A. KayaHoBckumn

OrPAHMYEHHBLIE ONEPATOPbLI CTOXACTUYECKOIO AN®PEPEHLIMPOBAHUA HA MPOCTPAHCTBAX HEPEIMYNAPHbBLIX
OBOBLLUEHHBLIX ®YHKLIWIA B AHANU3E BEJIOrO LWYMA JIEBU

Mpobnematnka. Onepatopbl cTOXacTU4eckoro AnddepPeHLMPOBaHNS UrpaloT BaXKHYI0 porb B raycCOBCKOM aHanuse 6enoro
wyma. B yacTHocTW, 3T onepaTopbl MOXHO MCMOMb30BaTh AN U3YYEHUS CBOWCTB PaCLUMPEHHOro CTOXacTUYeCKOro uHTerpana v pe-
LIEHUN HOPMaIbHO YNOPSAOYEHHbIX CTOXaCTUHECKUX YpaBHEHWI. XOTS rayCCOBCKUIA aHanv3 — 3To pa3BuUTasi TEOPUsi C MHOTOYUCHEH-
HbIMW MPUMOXEHNAMM, B MaTeEMaTUYECKMX 3adadvax NosiBNSIOTCA He TOMNbKO raycCoBCKuMe CriyyalHble npouecchl. B yacTHocTh, BaxHas
ponb B COBPEMEHHbIX UCCNeAoBaHUAX NpUHaanexuT npoueccam Jlesn. Moatomy Heobxoammo passvBaTb aHanus Jleeu, BkMoYas Teo-
pUI0 ONepaTopoB CTOXacTUYECKOro AnddepeHUMpoBaHms.

Llenb uccnepoBanus. B nocneaHne rogpl onepaTtopbl cToxacTuyeckoro AvdpdepeHumpoBaHns bbinm BBeAEHbI U U3yYeHbl, B YacT-
HOCTW, Ha MPOCTPAHCTBaX PErynsipHbIX OCHOBHbIX Y 0BOOLUEHHbIX (YHKUMA U Ha NPOCTPaHCTBAxX HeperynsipHbIX OCHOBHbIX (yHKLMIA
aHanu3a JleBun. B aToi cTaTtbe Mbl Aenaem creayowmin LWwar: BBOAUM Y U3y4aeM Takue onepaTopbl Ha NPOCTPaHCTBaX HeperynsipHbiX
0606LLIEHHBIX PYHKLNIA.

MeTtoauka peanusaumu. Mbl CMonb3yem, B HaCTHOCTW, TEOPUIO TMIbOEPTOBLIX OCHALLEHUIA U NMTBUHOBCKOE 0606LLeHne CBON-
CTBa XaoOTUYECKOro Pa3noXeHus:.

PesynbTatbl uccnegoBaHus. OCHOBHON pe3ynbTaT — TeOpeMa O CBOMCTBAX OnepaTopoB CTOXaCTUYECKOro AnddepeHLpoBaHUS.

BbiBogbl. OnepaTopbl cTOXacTuyeckoro AnddepeHLnpoBaHNs paccMOTPeHbl Ha NPOCTPaAHCTBaxX HeperynsipHbix 0606LLEHHbIX
dyHKUMIN aHanu3a 6enoro wyma JleBn. 3T0 MOXHO MOHMMATh Kak BKNag B AarnbHevilee pa3suTue aHanuaa JleBu. NpumeHeHus BBe-
[EHHbIX OrepaTopOB BMOMHE aHaNoOrnyHbl MPUMEHEHNSIM COOTBETCTBYIOLLIMX ONEepPaTopoB B rayCCOBCKOM aHanmuse.

KniouyeBble crnoBa: onepaTtop cToxacTuyeckoro AnddepeHLMpoBaHUst; PaCLUMPEHHbIA CTOXaCTUYECKMIN UHTErparn; ctoxacTuieckasi
npoussogHas Xvabl; npoecc Jlesu.

PexomennoBana Pamoro Hagpiiinuia no pemaxiii
(dizuko-mMaTeMaTUYHOIO (DaKyJIbTETY 18 rpynns 2015 poky
HTYY “KIII”



