Improving Adequacy of Type-2 Fuzzy Models byUsing Type-2 Fuzzy Sets
DOI:
https://doi.org/10.20535/1810-0546.2014.6.35939Keywords:
Type-2 Fuzzy Model, Interval Membership Function, Information Approach, Optimization Function, Entropy, Information Quality FactorAbstract
An information approach to fuzzy modeling was considered. The present paper formulates the task of developing a formal approach, which would enable analyzing fuzzy systems in terms of their capability to describe uncertainties of input information using interval membership functions. The discussed approach would allow to introduce the information factor for evaluating the quality of fuzzy models functioning using interval membership functions, and to increase the adequacy of the application area representation by a developed fuzzy model. The proposed information factor is a target function based on type-2 interval membership functions. The introduced target function optimizes the quantity of mutual information that is reflected from the inputs of a fuzzy model to its outputs. A technique for generating fuzzy type-2 models, which are optimal according to the given quality factor, and an algorithm for building an interval fuzzy model from experimental data and implementing the transition from regular to interval membership functions were introduced. An example of the calculations using this technique for computing the entropy estimation on a fuzzy model’s output is given.
References
L.A. Zadeh, “Fuzzy sets as a basis for theory of possibility”, Fuzzy sets and systems 100 suplements, vol. 100, pp. 9–34, 1999.
J.M. Mendel and R.I. John, “Lui Interval Type-2 fuzzy logic systems: theory and design”, IEEE Transactions on Fuzzy Sys., vol. 8, pp. 535–550, 2000.
Зайченко Ю.П. Нечеткие модели и методы в интеллектуальных системах. – К.: ИД “Слово”, 2008. – 344 с.
Борисов А.Н. Принятие решений на основе нечетких моделей. Примеры использования. – М.: Мир, 1976. – 168 с.
Ротштейн А.П. Интеллектуальные технологии идентификации: нечеткие множества, генетические алгоритмы, нейронные сети. – Винница: УНИВЕРСУМ-Вінниця, 1999. – 320 с.
Кондратенко Н.Р., Зелінська Н.Б., Куземко С.М. Діагностика гіпотиреозу на основі нечіткої логіки з використанням інтервальних функцій належності // Наук. вісті НТУУ “КПІ”. – 2003. – № 4. – С. 52–58.
Кондратенко Н.Р., Зелінська Н.Б., Куземко С.М. Нечіткі логічні системи з врахуванням пропусків в експериментальних даних // Наук. вісті НТУУ “КПІ”. – 2004. – № 5. – С. 37–41.
Ягер Р. Нечеткие множества и теория возможностей. – М.: Радио и связь, 1986. – 392 с.
R. Linsker, “How to generate ordered maps by maximizing the mutual information between input and output signal”, Neural computation, vol. 1, pp. 402–411, 1989.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 NTUU KPI Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work