Improving Adequacy of Type-2 Fuzzy Models byUsing Type-2 Fuzzy Sets

Authors

  • Наталія Романівна Кондратенко Vinnytsia National Technical University, Ukraine

DOI:

https://doi.org/10.20535/1810-0546.2014.6.35939

Keywords:

Type-2 Fuzzy Model, Interval Membership Function, Information Approach, Optimization Function, Entropy, Information Quality Factor

Abstract

An information approach to fuzzy modeling was considered. The present paper formulates the task of developing a formal approach, which would enable analyzing fuzzy systems in terms of their capability to describe uncertainties of input information using interval membership functions. The discussed approach would allow to introduce the information factor for evaluating the quality of fuzzy models functioning using interval membership functions, and to increase the adequacy of the application area representation by a developed fuzzy model. The proposed information factor is a target function based on type-2 interval membership functions. The introduced target function optimizes the quantity of mutual information that is reflected from the inputs of a fuzzy model to its outputs. A technique for generating fuzzy type-2 models, which are optimal according to the given quality factor, and an algorithm for building an interval fuzzy model from experimental data and implementing the transition from regular to interval membership functions were introduced. An example of the calculations using this technique for computing the entropy estimation on a fuzzy model’s output is given.

Author Biography

Наталія Романівна Кондратенко, Vinnytsia National Technical University

Kondratenko Natalya P., candidate of sciences (engineering), associate professor, professor

References

L.A. Zadeh, “Fuzzy sets as a basis for theory of possi­bility”, Fuzzy sets and systems 100 suplements, vol. 100, pp. 9–34, 1999.

J.M. Mendel and R.I. John, “Lui Interval Type-2 fuzzy logic systems: theory and design”, IEEE Transactions on Fuzzy Sys., vol. 8, pp. 535–550, 2000.

Зайченко Ю.П. Нечеткие модели и методы в интеллектуальных системах. – К.: ИД “Слово”, 2008. – 344 с.

Борисов А.Н. Принятие решений на основе нечетких моделей. Примеры использования. – М.: Мир, 1976. – 168 с.

Ротштейн А.П. Интеллектуальные технологии идентификации: нечеткие множества, генетические алгоритмы, нейронные сети. – Винница: УНИВЕРСУМ-Вінниця, 1999. – 320 с.

Кондратенко Н.Р., Зелінська Н.Б., Куземко С.М. Діагностика гіпотиреозу на основі нечіткої логіки з використанням інтервальних функцій належності // Наук. вісті НТУУ “КПІ”. – 2003. – № 4. – С. 52–58.

Кондратенко Н.Р., Зелінська Н.Б., Куземко С.М. Нечіткі логічні системи з врахуванням пропусків в експериментальних даних // Наук. вісті НТУУ “КПІ”. – 2004. – № 5. – С. 37–41.

Ягер Р. Нечеткие множества и теория возможностей. – М.: Радио и связь, 1986. – 392 с.

R. Linsker, “How to generate ordered maps by maxi­mizing the mutual information between input and output signal”, Neural computation, vol. 1, pp. 402–411, 1989.

Published

2014-12-26

Issue

Section

Art