The Limit Theorems for Extreme Residuals in Nonlinear Regression Model with Gaussian Stationary Noise
DOI:
https://doi.org/10.20535/1810-0546.2014.4.28291Keywords:
Non-linear regression model, Maximal residuals, Weak convergence, Gaussian stationary noise, Variance and the second spectral moment estimators, Estimator consistencyAbstract
In this paper non-linear regression model with Gaussian stationary random noise and continuous time is considered. The behavior of normalized in some way maximum residuals and maximum of residuals absolute values in which its the least squares estimator is substituted instead of unknown parameter of regression function. The convergence of distribution of these normalized maximum to double exponent law is proved which follows from the assumption of random noise normality. In the normalization of this maximum instead of unknown variance and the 2nd spectral moment of Gaussian stationary random noise consistent estimates of these parameters are substituted. It generalizes the residuals sum of squares of the classical regression analysis and Lindgren’s the 2nd spectral moment estimator, accordingly. In the paper mathematical machinery of statistics of random processes and limit theorems for extremes of Gaussian stationary noise is used. The obtained results can be used in construction of statistical tests for adequacy of the regression model.References
A.V. Ivanov, Asymptotic theory of nonlinear regression. Dordrecht: Kluwer Academic Publisher, 1997, 330 p.
Іванов О.В., Мацак І.К. Граничні теореми для екстремальних залишків у лінійній та нелінійній моделях регресії // Теорія ймовірностей та математична статистика. – 2012. – № 86. – С. 69–80.
Іванов О.В., Мацак І.К. Граничні теореми для екстремальних залишків у моделі регресії з важкими хвостами спостережень // Там же. – 2013. – № 88. – С. 59–67.
Іванов О.В., Приходько В.В. Граничні теореми для екстремальних залишків у лінійній моделі регресії з гауссовим стаціонарним шумом // Наукові вісті НТУУ “КПІ”. – 2013. – № 4. – С. 55–62.
Крамер Г., Лидбеттер М. Стационарные случайные процессы. – М.: Мир, 1969. – 399 с.
Леоненко Н.Н., Иванов А.В. Статистический анализ случайных полей. – К.: Вища школа, 1986. – 216 с.
G. Lindgren, “Spectral moment estimation by means of level crossings”, Biometrica, vol. 61, is. 3, pp. 401–418, 1974.
Лидбеттер М., Линдгрен Г., Ротсен Х. Экстремумы случайных последовательностей и процессов. – М.: Мир, 1989. – 392 с.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 NTUU KPI Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work