### Estimates for Moments of Extreme Values of the Random Process with Ssuperadditive Moment Function

#### Abstract

#### Keywords

#### Full Text:

PDF (Українська)#### References

*R.J*. *Serfling,* “Moment inequalities for the maximum cumulative sum”, Ann. Math. Statist., vol. 41, pр. 1227–1234, 1970.

*Алексич Г.* Проблемы сходимости ортогональных рядов / Пер. с англ. – М.: Изд-во иностр. лит-ры, 1963. – 359 с.

*F. Moricz,* “Moment Inequalities and the Strong Laws of Large Numbers”, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, vol. 35, pр. 299–314, 1976.

*F.A. Móricz et al.,*“Moment and probability bounds with quasi-superadditive structure for the maximum partial sum”, The Annals of Probability, vol. 10, no. 4, pр. 1032–1040, 1982.

*F.A. Moricz,* “A general moment inequality for the maximum of the rectangular partial sums of multiple series”, Acta Math. Hung., vol. 41, no. 3-4, pр. 337–346, 1983.

*T. T**ó**m**á**cs,* “A moment inequality for the maximum partial sums with a generalized superadditive structure”, Acta Acad. Paed. Agriensis, Sectio Mathematicae, vol. 26, pр. 75–79, 1999.

*F. Moricz et al., *“Strong Laws for Blockwise M-dependent Random Fields”, J. Theor. Probability, vol. 31, no. 3, pр. 660–671, 2008.

*U. Stadtmuller and Le V. Thanh, *“On the strong limit theorems for double arrays of blockwise M-dependent random variables”, Acta Math. Sinica, vol. 27, no. 10, pр. 1923–1934, 2011.

*I. Fazekas and O. Klesov*, “A general approach to the strong laws of large numbers”, Theory Probab. Appl., vol. 45, pр. 436–449, 2000.

*Grozian T.M.* Strong law of large numbers for random variables with superadditive moment function // Наукові вісті НТУУ “КПІ”. – 2012. – № 4. – С. 39–42.

#### GOST Style Citations

DOI: https://doi.org/10.20535/1810-0546.2014.4.28220

### Refbacks

- There are currently no refbacks.

Copyright (c) 2017 NTUU KPI