Complex-Valued Functions with NonDegenerate Groups of Regular Points
DOI:
https://doi.org/10.20535/1810-0546.2014.4.28215Keywords:
RV function, ORV function, Group of regular pointsAbstract
Complex-valued functions with nondegenerate groups of regular points are studied in the paper. A class of functions f, which takes value on the complex plain and for which the limit \[k_{f}\left ( \lambda \right )=\lim_{x\to 0}\frac{f\left ( \lambda x \right )}{f\left ( x \right )}\] exists, and is nonzero and finite for some \[\lambda\] from subset of positive real numbers is considered. It was received that this subset is multiplicative group, and it is called the group of regular points. Functions with nondegenerate groups of regular points generalize the class of RV functions. The corresponding limit functions are defined for complex-valued functions with nondegenerate groups of regular points. Factorization representations for this limit functions are obtained. It was shown, that for complex-valued function with nondegenerate group of regular points it limit function can be represented as a product of power function and periodic function of logarithm argument. Similar results are known for real valued functions with nondegenerate groups of regular points. Obtained results are generalized and complemented corresponding results from real valued situation. Some well-known theorems from RV functions theory can be covered from this general approach.References
J. Karamata, “Sur un mode de croissance reguliere”, Mathematica (Cluj), vol. 4, pp. 38–53, 1930.
N.M. Bingham et al., Regular variation. Cambridge: Cambridge University Press, 1987, 494 p.
Сенета Е. Правильно меняющиеся функции / Пер. с англ. – М.: Наука, 1985. – 144 с.
Псевдорегулярні функції та узагальнені процеси відновлення / В.В. Булдигін, К.-Х. Індлекофер, О.І. Клесов, Й.Г. Штайнебах. – К.: ТВіМС, 2012. – 441 с.
P.D.T.A. Elliott, Probabilistic Number Theory I. New York: Springer, 1979, 393 p.
Заболоцький М. Комплекснозначні повільно змінні функції вздовж кривої та у вершині сектору // Мат. вісник наук. тов-ва ім. Шевченка. – 2005. – № 2. – С. 83–91.
V.G. Avakumovic, “Uber einer O-Inversionssatz”, Bull. Int. Acad. Youg. Sci., vol. 29-30, pp. 107–117, 1936.
V.V. Buldygin et al., “On factorization representation for Avakumović-Karamata functions with nondegenerate groups of regular points”, Analysis Mathematica, vol. 30, pp. 161–192, 2004.
Булдигін В.В., Павленков В.В. Узагальнення теореми Карамати про асимптотичну поведінку інтегралів // Теорія ймовірностей та мат. статистика. – 2009. – № 81. – С. 13–24.
Булдигін В.В., Павленков В.В. Теорема Караматы для регулярно LOG-периодических функций // Укр. мат. журнал. – 2012. – 64. – С. 1443–1463.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 NTUU KPI Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work