Consistency of Least Squares Estimator of Linear Regression Parameter in Case of Discrete Tme and Long-Range or Weak Dependent Regressors
DOI:
https://doi.org/10.20535/1810-0546.2014.4.27946Keywords:
Consistency, Linear regression model, Errors in regressors, Least square estimator, Long-range dependence, Weak dependenceAbstract
Linear regression model with discrete time, long-range/weak dependent random noise and time dependent regressors, which are observed with long L range/weak dependent errors, is considered. Parameter estimation of such models is one of the important problems of statistics of random processes. Least squares estimator is chosen for the estimation. The aim of the work is to prove consistency of least squares estimator of such regression model. Theory of stationary Gaussian random sequences with long-range and weak dependence, properties of slowly varying at infinity functions are used to get the results. In particular, asymptotic behavior of slowly varying at infinity functions in the integral sums is a key point in the proof of consistency in case of long-range dependent noise or random errors in regressors. Sufficient conditions for consistency of least squares estimator of regression parameter are obtained in the paper. It makes possible further study of asymptotic properties of least squares estimator of regression parameter.
References
Иванов А.В., Леоненко Н.Н. Статистический анализ случайных полей. – К.: Вища шк., 1986. – 216 с.
A.V.Ivanov, Asymptotic Theory of Nonlinear Regression. Dordrecht: Kluwer Academic Press, 1997, 328 p.
Дороговцев А.Я. Теория оценок параметров случайных процессов. – К.: Вища шк., 1982. – 192 с.
Голубовська Л.П., Іванов О.В., Орловський І.В. Асимптотичні властивості оцінки параметрів лінійної регресії у випадку сильнозалежних регресорів // Наук. вісті НТУУ “КПІ”. – 2012. – № 4. – С. 26–33.
Гихман И.И., Скороход А.В. Введение в теорию случайных процессов. – М.: Наука, 1977. – 568 с.
Сенета Е. Правильно меняющиеся функции. – М.: Наука. – 1985. – 144 с.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 NTUU KPI Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work