Distribution of the Antiferromagnetism Vector for an Isolated Antidot and a System of Remote Antidots in Antiferromagnets

Authors

  • Юрій Іванович Горобець Institute of Magnetism, National Academy of Sciences of Ukraine, NTUU KPI, Ukraine
  • Оксана Юріївна Горобець NTUU KPI, Institute of Magnetism, National Academy of Sciences of Ukraine., Ukraine
  • Володимир Вікторович Куліш NTUU KPI, Ukraine

DOI:

https://doi.org/10.20535/1810-0546.2014.4.27296

Keywords:

Antiferromagnet, Thin magnetic film, Antidot, Antiferromagnetic vector

Abstract

In the paper, an antiferromagnetism vector distribution in an antiferromagnetic film composed of an uniaxial or isotropic two-sublattice antiferromagnet with a set system of circular antidots is investigated. For such a system, the Landau-Lifshitz equation is written and its solution is obtained. An antiferromagnetism vector distribution is found for three isolated antidot cases (in isotropic antiferromagnet, in “easy plane” antiferromagnet, in “easy axis” antiferromagnet) with vortex-type boundary conditions on the antidot surface and three cases of remote antidotes system (in isotropic antiferromagnet, in “easy plane” antiferromagnet and in “easy axis” antiferromagnet) with vortex-type boundary conditions on the surface of one of the antidots. It is shown that the plane distribution of the antiferromagnetism vector on at least one cross-section of one of the antidots is possible only in the case of the antidots remoteness.

Author Biographies

Юрій Іванович Горобець, Institute of Magnetism, National Academy of Sciences of Ukraine, NTUU KPI

Deputy Director of the Institute of Magnetism, National Academy of Sciences of Ukraine, head of department at the NTUU KPI

Оксана Юріївна Горобець, NTUU KPI, Institute of Magnetism, National Academy of Sciences of Ukraine.

professor at the NTUU KPI, senior research fellow at the Institute of Magnetism, National Academy of Science of Ukraine.

Володимир Вікторович Куліш, NTUU KPI

postdoctoral student at the NTUU KPI

References

Казаков В.Г. Тонкие магнитные пленки // Соросовский образов. журн. – 1997. – № 1. – С. 107–114.

P. Chu et al., “Exchange/dipole collective spin-wave mo­des of ferromagnetic nanosphere arrays,” Phys. Rev. B, vol. 73, Mar. 2006.

J.C. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. of Magnetism and Magnetic Materials, vol. 159, pp. L1–L7, Jun. 1996.

K.Yu. Guslienko et al., “Magnetic Vortex Core Dynamics in Cylindrical Ferromagnetic Dots,” Phys. Rev. Lett., vol. 96, Feb. 2006.

M.J. Van Baelet al., “Flux pinning by regular arrays of ferromagnetic dots,” Physica C: Superconductivity, vol. 332, pp. 12–19, May 2000.

J. Sort et al., “Exchange bias effects in submicron antifer­romagnetic-ferromagnetic dots prepared by nanosphe­re litho­gra­phy,” J. Appl. Phys., vol. 95, pp. 7516–7518, 2004.

V. Baltz et al., “Size effects on exchange bias in sub-100 nm ferromagnetic–antiferromagnetic dots deposited on prepatterned substrates,” Appl. Phys. Lett., vol. 84, pp. 4923–4925, 2004.

S. Neusser et al., “Anisotropic Propagation and Damping of Spin Waves in a Nanopatterned Antidot Lattice,” Phys. Rev. Lett., vol. 105, 2010.

Y. Otani et al., “Magnetization reversal in submicron ferromagnetic dots and antidots arrays,” IEEE Transactions on Magnetics 34, is. 4, pp. 1090–1092, 1998.

W.J. Gong et al., “Exchange bias and its thermal stability in ferromagnetic/antiferromagnetic antidot arrays,” Appl. Phys. Lett., vol. 101, 2012.

R.P.Cowburn et al., “Magnetic domain formation in lithographically defined antidot Permalloy arrays,” Appl. Phys. Lett., vol. 70, Apr. 1997.

S. NeusserandD. Grundler, “Magnonics: Spin Waves on the Nanoscale,” Adv. Mater., vol. 21, pp. 2927–2932, 2009.

G. Ctistis et al., “Optical and Magnetic Properties of Hexagonal Arrays of Subwavelength Holes in Optically Thin Cobalt Films,” Nano Lett., vol. 9, pp. 1–6, 2009.

M. Kostylev et al., “Propagating volume and localized spin wave modes on a lattice of circular magnetic antidotes”, J. Appl. Phys., vol. 103, 07C507, 2008.

Нелинейные волны намагниченности. Динамические и топологические солитоны / А.М. Косевич, Б.А. Иванов, А.С. Ковалев.– К.: Наук. думка, 1983. – 192 с.

O.Yu. Gorobets, “Degeneration of magnetic states of the order parameter relative to the boundary conditions and discrete energy spectrum in ferromagnetic and antiferro­magnetic nanotubes,” Chaos, Solitons & Fractals, vol. 36, pp. 671–676, May 2008.

Published

2014-08-20