Sufficient Conditions of Ergodicity of Solutions of Second Order Abstract Linear Differential Equations
DOI:
https://doi.org/10.20535/1810-0546.2014.4.27282Keywords:
Ergodicity, Asymptotic behavior, Banach space, Linear differential equations, Abstract Cauchy problemAbstract
This paper is devoted to second order abstract linear differential equations in a Banach space. For such equations the Cauchy problem is stated, and the behavior of its solutions as \[t\rightarrow +\infty\] is examined. The aim of the paper is to study ergodicity and asymptotic behavior of the solutions of the strongly correct Cauchy problem. For this purpose the theory of complete second order linear differential equations in Banach spaces, developed by Fattorini, is used. As shown in the paper, for a wide class of equations the solutions are either ergodic or unbounded, depending on the initial values. For the solutions to be ergodic, conditions on the linear operators-coefficients of the differential equation and the initial values of the Cauchy problem are obtained. In case of ergodic solutions, exact values of ergodic limits are given. In case of unbounded solutions, asymptotic behavior of solutions is described. Results obtained in this paper are a generalization of the previously known results concerning ergodic properties of the solutions for the Cauchy problem for the incomplete second order equations.
References
E. Hille and R.S. Phillips, Functional Analysis and Semi-Groups. Providence: Amer. Math. Soc., 1957, 808 p.
Голдстейн Дж. Полугруппы линейных операторов и их приложения. – К.: Выща шк., 1989. – 348 с.
J.A. Goldstein et al., “Convergence rates of ergodic limits for semigroups and cosine functions,” Semigroup Forum, vol. 16, pp. 89–95, 1978.
S.-Y. Shaw, “Mean and pointwise ergodic theorems for cosine operator functions,” Math. J. Okayama Univ., vol. 27, is. 1, pp. 197–203, 1985.
R. Sato and S.-Y. Shaw, “Strong and uniform mean stability of cosine and sine operator functions,” J. Math. Anal. Appl., vol. 330, is. 2, pp. 1293–1306, 2007.
S.-Y. Shaw, “Growth order and stability of semigroups and cosine operator functions,” J. Math. Anal. Appl., vol. 357, is. 2, pp. 340–348, 2009.
Горбачук М.Л., Кочубей А.Н., Шкляр А.Я. О стабилизации решений дифференциальных уравнений в гильбертовом пространстве // Докл. акад. наук. – 1995. – 341, № 6. – С. 734–736.
Горбачук М.Л., Шкляр А.Я. О поведении на бесконечности решений дифференциальных уравнений в гильбертовом пространстве // Тр. семинара им. И.Г. Петровского. – 1996. – Вып. 19. – С. 174–201.
Горбатенко Я.В. Ергодичність розв’язків абстрактних лінійних диференціальних рівнянь другого порядку в банаховому просторі // Доп. НАНУкраїни – 2010. – № 9. – С. 10–19.
H.O. Fattorini, Second Order Linear Differential Equations in Banach Spaces. Amsterdam: Elsevier Science Publishers B.V., 1985, 314 p.
T.J. Xiao and J. Liang, “On complete second order linear differential equations in Banach spaces,” Pacific J. Math., vol. 142, is. 1, pp. 175–195, 1990.
Горбатенко Я.В. Розв’язність і сильна коректність задачі Коші для абстрактних лінійних диференціальних рівнянь у банахових просторах // Наук. вісті НТУУ “КПІ”. – 2010. – № 4. – С. 40–43.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 NTUU KPI Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work