Global and Local Characteristics of the Blood Flow in Large Vessels Based on 4D MRI Data
DOI:
https://doi.org/10.20535/1810-0546.2017.2.99724Keywords:
4D flow, MRI, Bicuspid valve, Aortic flow, Vessel pathologiesAbstract
Background. Magnetic resonance imaging (MRI) using three-dimensional velocity encoding phase contrast (PC) methods offers the opportunity to quantify time-resolved 3D flow patterns in vivo. This technique can have a breakthrough impact on the evaluation, risk stratification and surgical planning in hemodynamic-related pathologies, e.g., cardiac valve diseases, arterial stenos or insufficiency, aortic dilation, dissection or coartaction. However, its applicability in clinics is limited due to the complex post-processing required to extract the information and the difficulty to synthesize the obtained data into clinical useful parameters.
Objective. In this work, a software tool is presented which analyzes the row data and provides information along the whole vessel, between two selected cross-sections and in the vicinity of the selected points.
Methods. A fully automatic algorithm based on the properties of the steady Hagen–Poiseuille flow was developed which in few minutes segments the vessel shape, visualize the blood flow and calculates its characteristics. Since the time and space resolutions of the data are limited, we avoid the differentiation of the velocity field.
Results. The algorithm has been tested on datasets of patients with bicuspid aortic valve and healthy volunteers. Results are provided both as maximum and time-averaged values in aorta, pulmonary artery, left and right ventricles.
Conclusions. The results demonstrate that the presented approach could be useful for medical doctors in order to classify and stratify different valve and/or vessel pathologies.References
M.A. Bernstein et al., Handbook of MRI Pulse Sequences. Elsevir, Academic Press, 2004.
U. Morbiducci et al., “In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast”, Ann. Biomed. Eng., vol. 37, no. 3, 2009, pp. 516–531. doi: 10.1007/s10439-008-9609-6
U. Morbiducci et al., “Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study”, Biomech. Model Mechanobiol., vol. 10, no. 3, pp. 339–355, 2011. doi: 10.1007/s10237-010-0238-2
F. Piatti et al., “Towards the improved quantification of in vivo abnormal wall shear stresses in BAV-affected patients from 4D flow imaging: Benchmarking and application to real data”, J. Biomech., vol. 50, pp. 93–101, 2017. doi: 10.1016/j.jbiomech.2016.11.044
I. Nesteruk and A. Redaelly, “Cooperation between Politecnico di Milano and Institute of Hydromechanics NASU in frames of EUMLS project”, in Proc. AMMODIT and final EUMLS Workshop, Mathematics for Life Sciences, Hasenwinkel, Germany, March 07–11, 2016, pp. 18–19.
L.G. Loitsyanskiy, Mechanics of Liquids and Gases, 6th ed. New York and Wallingford: Begell House, 1995.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 NTUU KPI Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work