Projection-Grid Method of Elasticity Problems Solution in Flight Dynamics

Олександр Сергійович Цибенко, Олександр Станіславович Конюхов

Abstract


Background. The development of efficient projection-grid method for solving initial-boundary value problems of the elastic dynamics of the aircraft.

Objective. Theoretical study of numerical methods for solving the elastic dynamics of aircraft in order to create a generalized method of numerical integration of initial-boundary value problems for discrete-continuum.

Methods. As a generalized mathematical description of the initial-boundary value problem by using the operator formulation of the first order main part. Approximate solution of initial value problems of elastic dynamics of aircraft represented as a linear form on the class of admissible functions of non-degenerate projective basis. Algebraization of the spatial variables is realized because of orthogonalization residuals of equations and boundary conditions for the system of functions defining non-degenerate weight basis. The greatest effect is achieved by computing the matching item in the projection and a weight basis in conjunction with the "weak" formulation of the Galerkin method in the form of the finite element method. The general form of the finite difference method is used for algebraization of unknown functions on a temporary argument. For solving systems of nonlinear algebraic equations on time layers, Newton's method and its modifications were applied.

Results. A general approach to solving the problems of the elastic dynamics of aircraft using the procedure of algebraization based on projection-grid schemes of the method of weighted residuals. A posteriori estimates for the accuracy, convergence and stability of numerical solutions of the elastic dynamics of aircraft were presented.

Conclusions. The developed technique of algebraization tasks in elastic dynamics of aircraft can be widely used in the simulation of the dynamics of liquid carrier rockets in different parts of the flight.

Keywords


Dynamics of aircraft; Initial-boundary value problem; Galerkin method; Finite element method; Finite-difference schemes; Accuracy; Convergence; Stability

References


M. Pawlowski et al., Control Systems Rotary Motion of Spacecraft. Kyiv, Ukraine: Naukova dumka, 1997, 200 p. (in Ukrainian).

O. Tsybenko et al., “Development of adequate mathematical model study of the dynamics of the main wings fairing launch vehicle during flight and offices”, Naukovi Visti NTUU KPI, no. 6, 2006, pp. 139–148 (in Ukrainian).

J. Engelbrecht and U. Nigul, Nonlinear Deformation Waves. Moscow, Russia: Nauka, 1981, 256 p. (in Russian).

A. Tsybenko and A. Konyuhov, Simulation of Fluid Dynamic Models of Rockets. Kyiv, Ukraine: NTUU KPI, 2008, 230 p. (in Russian).

A. Tsybenko and S. Lavrikov, “Generalized scheme of constructing the projection-grid methods”, Problemy procnosti, no. 11, pp. 103–108, 1987 (in Russian).

G. Marchuk and V. Agoshkov, Introduction to the Grid Projection Methods. Moscow, Russia: Nauka, 1981, 416 p. (in Russian).

K. Bathe and E. Wilson, Numerical Methods in Finite Element Analysis. Moscow, Russia: Stroyizdat, 1982. 448 p. (in Russian).

J. Panovko, Internal Friction Oscillations of Elastic Systems. Moscow, Russia: Fizmatgiz, 1960, 193 p. (in Russian).

A. Samarskiy, The Theory of Difference Schemes. Moscow, Russia: Nauka, 1977, 656 p. (in Russian).

A. Tsybenko et al., Mathematical Modeling Electrothermomechanical Processes in Induction Heating Conductive Bodies. Kyiv, Ukraine: NTUU KPI, 2007, 200 p. (in Russian).

A. Konyuhov et al., “Natural oscillations of packet layout liquid launch vehicle”, Problemy Prochnosti, no. 3, 2001, pp. 93–99 (in Russian).

G. Strang and J. Fix, The Theory of Finite Element Method. Moscow, Russia: Mir, 1977, 350 p. (in Russian).


GOST Style Citations


  1. Павловський М.А., Горбулін В.П., Клименко О.М. Системи керування обертальним рухом космічних апаратів. – К.: Наук. думка, 1997. – 200 с.

  2. Розробка адекватної математичної моделі дослідження динаміки стулок головного обтічника ракети-носія у процесі польоту і відділення / О.С. Цибенко, М.Г. Крищук, О.С. Конюхов та ін. // Наукові вісті НТУУ “КПІ”.  – 2006. – № 6. – С. 139–148.

  3. Энгельбрехт Ю.А., Нигул У.К. Нелинейные волны деформации. – М.: Наука, 1981. – 256 с.

  4. Цыбенко А.С., Конюхов А.С. Имитационные динамические модели жидкостных ракет-носителей. – К.: НТУУ “КПИ”, 2008. – 230 с.

  5. Цыбенко А.С., Лавриков С.А. Обобщенные схемы построения проекционно-сеточных методов // Проблемы прочности. – 1987. – № 11. – С. 103–108.

  6. Марчук Г.И., Агошков В.И. Введение в проекционно-сеточные методы. – М.: Наука, 1981. – 416 с.

  7. Бате К., Вилсон Е. Численные методы анализа и метод конечных элементов. – M.: Стройиздат, 1982. – 448 с.

  8. Пановко Я.Г. Внутреннее трение при колебаниях упругих систем. – М.: Физматгиз, 1960. – 193 с.

  9. Самарский А.А. Теория разностных схем. – М.: Наука, 1977. – 656 с.

  10. Цыбенко А.С., Крищук Н.Г., Конюхов А.С. Математическое моделирование электротермомеханических процессов при индукционном нагреве проводящих тел. – К.: НТУУ “КПИ”, 2007. – 200 с.

  11. Собственные колебания жидкостных ракет-носителей пакетной компоновки / А.С. Конюхов, В.С. Легеза, А.С. Цыбенко, Н.Г. Крищук // Проблемы прочности. – 2001. – № 3. – С. 93–99.

  12. Стренг Г., Фикс Дж. Теория метода конечних элементов. – М.: Мир, 1977. – 350 с.




DOI: https://doi.org/10.20535/1810-0546.2015.2.91569

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 NTUU KPI