The Vacancy Formation Energy in the Quasi-Harmonic Approximation from First Principles Calculations

Authors

  • Сергій Олександрович Замулко National Technical University of Ukraine “Kyiv Polytechnic Institute”, Ukraine

DOI:

https://doi.org/10.20535/1810-0546.2015.2.91237

Keywords:

Density functional theory, Vacancy formation energy, First principles, Quasi-harmonic approximation

Abstract

Background. This work is related to the theoretical calculation of the vacancy formation energy in the context of finding an answer to two unsolved questions. Firstly, there is no single answer to the question of calculations accuracy of the vacancy formation energy. Secondly, the existing phenomenological theories tacitly assume that the vacancy formation energy and entropy of vacancy formation do not depend on temperature.

Objective. The aim of the study was to investigate the effect of temperature factor on the free energy of vacancy formation and its components in a number of metals within the quasi-harmonic approximation.

Methods. The vacancy formation energy and entropy in FCC Al, Ag, and Pd are determined as a function of temperature using ab initio methods within a quasi-harmonic approximation.

Results. It was shown, that the vacancy formation energy substantially increases with temperature in all cases, which is related to the thermal lattice expansion. Such increase of the vacancy formation energy is compensated by the vibrational vacancy formation entropy contribution. The latter appears to be strongly increasing with temperature in the case of Mo.

Conclusions. However, a thermodynamic analysis shows that such increase of vacancy formation energy in the process of calculation is largely underestimated. The latter is compensated by contribution from vibrating entropy of vacancy formation and strongly increases with temperature. Such underestimation is related to certain problems in quasi-harmonic approximation.

Author Biography

Сергій Олександрович Замулко, National Technical University of Ukraine “Kyiv Polytechnic Institute”

Sergiy O. Zamulko,

candidate of sciences (engineering), senior research fellow at the Metal Physics Department of the Faculty of Physical Engineering

References

Y. Kraftmakher, “Equilibrium vacancies and thermophysical properties of metals”, Phys. Rep., vol. 299, p. 79, 1998.

H.E. Schaefer, “Investigation of thermal equilibrium vacancies in metals by positron annihilation”, Phys. Status Solidi A, vol. 102, p. 47, 1987.

P. Ehrhardt et al., Atomic defects in metals, H. Ullmaier,Ed.Berlin,Germany: Springer-Verlag, 1991, vol. 25, p. 437.

M.J. Gillan, “Calculation of the vacancy formation energy in aluminium”, Some Rev. A, vol. 1, p. 689, 1989.

B. Drittler et al., “Vacancy formation energies of fcc transition metals calculated by a full potential green’s function method”, Solid State Commun., vol. 79, p. 31, 1991.

H.M. Polatoglou et al., “Vacancy-formation energies at the (111) surface and in bulk Al, Cu, Ag, and Rh”, Phys. Rev. B, vol. 48, p. 1877, 1993.

W. Frank et al., “Properties of monovacancies and self-interstitials in bcc Li: An ab initi pseudopotential study”, Phys. Rev. B, vol. 48, p. 7676, 1993.

N. Chetty et al., “Vacancies and impurities in aluminum and magnesium”, Phys. Rev. B, vol. 52, p. 6313, 1995.

T. Korhonen et al., “Vacancy-formation energies for fcc and bcc transition metals”, Phys. Rev. B, vol. 51, p. 9526, 1995.

E. Smargiassi and P.A. Madden, “Ab initio molecular dynamics using density based energy functionals: application to ground state geometries of some small clusters”, Phys. Rev. B, vol. 51, p. 129, 1995.

W. Frank et al., “First-principles calculations of absolute concentrations and self-diffusion constants of vacancies in lithium”, Phys. Rev. Lett., vol. 77, p. 518, 1996.

M.J. Mehl and D.A. Papaconstantopoulos, “Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals”, Phys. Rev. B, vol. 54, p. 4519, 1996.

B. Meyer and M. Fahnle, “Ab initio calculation of the formation energy and the formation volume of monovacancies in Mo”, Phys. Rev. B, vol. 56, p. 13595, 1997.

D.E. Turner et al., “Energetics of vacancy and substitutional impurities in aluminum bulk and clusters”, Phys. Rev. B, vol. 55, p. 13842, 1997.

A. Satta et al., “Vacancy self-diffusion parameters in tungsten: Finite electron-temperature LDA calculations”, Phys. Rev. B, vol. 57, p. 11184, 1998.

A. Satta et al., “First-principles study of vacancy formation and migration energies in tantalum”, Phys. Rev. B, vol. 60, p. 7001, 1999.

P.A. Korzhavyi, “First-principles calculations of the vacancy formation energy in transition and noble metals”, Phys. Rev. B, vol. 59, p. 11693, 1999.

P. Soderlind et al., “First-principles formation energies of monovacancies in bcc transition metals”, Phys. Rev. B, vol. 61, p. 2579, 2000.

K.M. Carling et al., “Vacancies in metals: from first-principles calculations to experimental data”, Phys. Rev. Lett., vol. 85, p. 3862, 2000.

T.R. Mattsson and A.E. Mattsson, “Calculating the vacancy formation energy in metals: Pt, Pd, and Mo”, Phys. Rev. B, vol. 66, p. 214110, 2002.

K.M. Carling et al., “Vacancy concentration in Al from combined first-principles and model potential calculations”, Phys. Rev. B, vol. 67, p. 054101, 2003.

D.A. Andersson and S.I. Simak, “Monovacancy and divacancy formation and migration in copper: A first-principles theory”, Phys. Rev. B, vol. 70, p. 115108, 2004.

T.R. Mattsson et al., “Quantifying the anomalous self-diffusion in molybdenum with first-principles simulations”, Phys. Rev. B, vol. 80, p. 224104, 2009.

D. Simonovic and M.H.F. Sluiter, “Impurity diffusion activation energies in Al from first principles”, Phys. Rev. B, vol. 79, p. 054304, 2009.

B. Grabowski et al., “Ab initio up to the melting point: Anharmonicity and vacancies in aluminum”, Phys. Rev. B, vol. 79, p. 134106, 2009.

B. Grabowski et al., “Formation energies of point defects at finite temperatures”, Phys. Status Solidi B, vol. 248, p. 1295, 2011.

R. Nazarov et al., “Vacancy formation energies in fcc metals: Influence of exchange-correlation functionals and correction schemes”, Phys. Rev. B, vol. 85, p. 144118, 2012.

J.P. Perdew et al., “Restoring the density-gradient expansion for exchange in solids and surfaces”, Phys. Rev. Lett., vol. 100, p. 136406, 2008.

R. Armiento and A.E. Mattsson, “Functional designed to include surface effects in self-consistent density functional theory”, Phys. Rev. B, vol. 72, p. 085108, 2005.

A.E. Mattsson et al., “Electronic surface error in the Si interstitial formation energy”, Phys. Rev. B, vol. 77, p. 155211, 2008.

A.E. Mattsson et al., “The AM05 density functional applied to solids”, J. Chem. Phys., vol. 128, p. 084714, 2008.

A. Glensk et al., “Breakdown of the arrhenius law in describing vacancy formation energies: the importance of local anharmonicity revealed by Ab initio thermodynamics”, Phys. Rev. X, vol. 4, p. 011018, 2014.

L. Zhao et al., “Finite temperature vacancy formation thermodynamics: local harmonic and quasiharmonic studies”, Model. Simul. Mater. Sci. Eng., vol. 1, p. 539, 1993.

S.M. Foiles, “Evaluation of harmonic methods for calculating the free energy of defects in solids”, Phys. Rev. B, vol. 49, p. 14930, 1994.

S.M. Kim and W.J.L. Buyers, “Temperature dependence of the vacancy formation energy in aluminum and positron annihilation”, Phys. Lett. A, vol. 49, p. 181, 1974.

P.E. Blochl, “Projector augmented-wave method”, Phys. Rev. B, vol. 50, p. 17953, 1994.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method”, Phys. Rev. B, vol. 59, p. 1758, 1999.

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals”, Phys. Rev. B, vol. 47, p. 558, 1993.

G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium”, Phys. Rev. B, vol. 49, p. 14251, 1994.

G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set”, Phys. Rev. B, vol. 54, p. 11169, 1996.

J.P. Perdew et al., “Generalized gradient approximation made simple”, Phys. Rev. Lett., vol. 77, p. 3865, 1996.

H.J. Monkhorst and J.D. Pack, “Special points for Brillouin-zone integrations”, Phys. Rev. B, vol. 13, p. 5188, 1976.

G. Kresse et al., “Ab initio force constant approach to phonon dispersion relations of diamond and graphite”, Europhys. Lett., vol. 32, p. 729, 1995.

A. Togo et al., “First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures”, Phys. Rev. B, vol. 78, p. 134106, 2008.

J.L. Campbell et al., “Temperature dependence of positron trapping in silver and nickel”, J. Phys. F: Met. Phys., vol. 7, p. 1985, 1977.

S.О. Zamulko, “Definition peculiarities of energy of vacancy formation in 4d-transition metals from first principles”, Naukovi visti NTUU KPI, no. 4, pp. 127–132, 2014 (in Ukrainian).

R. Feynman, Statistical mechanics.Moskov,Russia: Mir, 1978, 407 p (in Russian).

T. Hehenkamp, “Absolute vacancy concentrations in noble metals and some of their alloys”, J. Phys. Chem. Solids, vol. 55, p. 907, 1994.

K. Wang and R.R. Reeber, “The perfect crystal, thermal vacancies and the thermal expansion coefficient of aluminium”, Philos. Mag. V., vol. 80, p. 1629, 2000.

R.O. Simmons and R.W. Balluffi, “Measurement of the equilibrium concentration of lattice vacancies in silver near the melting point”, Phys. Rev., vol. 119, p. 600, 1960.

Published

2015-05-12

Issue

Section

Art