Systemic Approach to Forecasting
DOI:
https://doi.org/10.20535/1810-0546.2015.2.91066Keywords:
Uncertainties in modeling and forecasting, Systematic approach, Decision support systemAbstract
Background. Further enhancement of forecasts quality for dynamics of financial and economic processes requires development of new techniques and approaches in the frames of modern concepts for constructing informational decision support systems (DSS).
Objective. The main purpose of the study is as follows: to consider system analysis principles that are suitable for solving the problem of short-term forecasting; to develop effective data processing system that implements the system analysis principles selected in the frames of DSS; to analyze possible types of uncertainties that are encountered in model constructing and forecasts estimating, and to propose the methods for their description and taking into consideration.
Methods. To develop DSS for forecasting financial and economic processes and estimation of financial risks the following system analysis principles were hired: hierarchical architecture, the possibilities for identification and processing possible uncertainties, alternatives computing, and tracking the computational procedures for all stages of data processing. The system developed provides possibilities for taking into consideration statistical and parametric uncertainties. The DSS proposed has a modular architecture that could be easily expanded with new functions like preliminary data processing, model parameters estimation, and procedures for computing forecasts and financial risks.
Results. The main result of the study is systemic methodology of mathematical modeling financial and economic processes, that has been implemented in the frames of the DSS proposed. High quality of final results is achieved thanks to appropriate tracking of all computations using several sets of statistical quality criteria. An example is given for mathematical modeling, estimation and forecasting of financial risk. The results of estimation show that the systemic approach proposed has good perspectives for its practical use.
Conclusions. Thus, we proposed a systemic approach to mathematical modeling and forecasting financial and economic processes as well as estimation of financial risk. The use of the approach provides possibilities for computing estimate forecasts of high quality using statistical data.References
G. Fernandez, Data Mining Using SAS Applications. New York: CRC Press LLC, 2003, 360 p.
P.I. Bidyuk et al., Time Series Analysis. Kyiv, Ukraine: Polytechnika, 2013, 600 p. (in Ukrainian).
M.Z. Zgurovskii and N.D. Pankratova, System Analysis: Problems, Methodology, Applications. Kyiv, Ukraine: Naukova Dumka, 2005, 745 p. (in Russian).
V.S. Anfilatov et al., System Abalysis in Management.Moscow, Russia: Finances and Statistica, 2002, 368 p. (in Russian).
M.Z. Zgurovskii and V.N. Podladchikov, Analytical Methods of Kalman Filtering. Kyiv, Ukraine: Naukova Dumka, 1995, 285 p. (in Russian).
B.P. Gibbs, Advanced Kalman Filtering, Least Squares and Modeling. Hoboken: John Wiley & Sons, Inc., 2011, 627 p.
S. Haykin, Adaptive Filter Theory. Upper Saddle River (New Jersey): Prentice Hall, 2002, 922 p.
W.R. Gilks et al., Markov Chain Monte Carlo in Practice. New York: CRC Press LLC, 2000, 486 p.
C.S. Jao, Efficient Decision Support Systems – Practice and Challenges from Current to Future. Rijeka (Croatia): Intech, 2011, 556 p.
M.Z. Zgurowskii et al., “Methods of constructing Bayesian networks based on scoring functions”, Cybernetics and System Analysis, vol. 44, no. 2, pp. 219–224, 2008.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 NTUU KPI Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work