Modelling and Assessment of Risk of Failure Auxiliaries Supply System of Nuclear Power Plant from External Independent Sources

Євген Іванович Бардик


Problematics. In the conditions of objectively existing aging of electric equipment, climatic conditions deterioration, hard work schedule of operation personnel at modern EES of NPS, there grows the problem of ensuring reliability and safety of functioning of the NPS in the emergencies in a power supply system. That requires carrying out the complex risk analysis of EES subsystems and NPS operation in the case of refusal of electrical equipment.

Research objective. Development of mathematical support and software for assessment of circuits reliability and refusal risk of NPS MV external power supply system under conditions of internal MV power supply loss for providing the mode of shut-down cooling and cold start of the block.

Implementing procedure. In the condition of essential incompleteness and uncertainty of statistical information on  refusals of external network electric equipment, the hybrid fuzzy-stochastic models of certain electrical equipment failure for an assessment of refusal risk of NPP MV external power source method of electrical equipment failure function of distribution is attached. It is based on use of statistical data on refusals of main population of certain type and voltage class electric equipment as well as the expert estimates of refusal intensity of certain units of equipment.

Results of research. The hybrid fuzzy-stochastic models of refusals of the main power and switching equipment of power supply systems and own needs of the NPS and fuzzy-stochastic models of refusal risk assessment of MV external power supply system are developed. The probability assessment of no-failure operation and fuzzy ranging on reliability is carried out for four versions of power supply circuits of the NPS HV distributing device; the refusal risk assessment of the external power supply system from remote power plants and substations is executed.

Conclusions. In order to estimate schemes reliability and risk failure of electrical equipment and system of power supply MV from external supplies, fuzzy mathematical models were developed and failure risk estimation of four power supplies schemes for high-voltage NPS highways.


Nuclear power plant; Reliability; Risk; Failure; Fuzzy sets; Probability; Electric power supply


IAEA Nuclear Energy Series, № N6T38 Electric Greed Realiability and Interface with nuclear Power Plants, 2012.

E. Ciapessoni et al., “Probabilistic approach for operational risk assessment of power systems”, CIGRE, pp. 4–114, 2008.

V.A. Skopyntsev, “Assessment of reliability of electrical connection of NPP with power grid for electricity supply of auxiliary transformer from external sources”, in Jelektrojenergetika Rossii: Sovremennoe Sostojanie, Problemy i Perspektivy, M.Sh. Mys­rykhanova et al., Eds. Moscow, Russia: Energoatomizdat, 2007, 176 р. (in Russian).

Ie.I. Bardyk, “Reliability evaluation models of auxiliary supply system of nuclear power plant from independent sources with fuzzy defined parameters of electrical equipment failures”, Pratsi Instytutu elektrodynamiky NANU, vol. 37, pp. 34–38, 2014 (in Ukrainian).

Ie.I. Bardyk, “Modeling of electric power system for risk assessment of accidents occurrence during the failure of electrical equipment”, Naukovi Pratsi Donets'koho Nats. Tekhn. Univesytetu. Ser. Elektrotekhnika ta Enerhetyka, no. 1(14), pp. 15–21, 2013 (in Ukrainian).

M.V. Kosteriev and Ie.I. Bardyk, Questions of Construction Technical Evaluation of Objects of Fuzzy Models of Electrical Systems. Кyiv, Ukraine: NTUU KPI, 2010, p. 131 (in Ukrainian).

M.V. Kosteriev and Ie.I. Bardyk. “Dynamic modeling of NPP in accidental condition of voltage and frequency reduction in auxiliary system”, Tekhn. Elektrodynamika. Tem. vyp. “Problemy Suchasnoyi Elektrotekhniky”, part 7, pp. 31–37, 2004 (in Russian).

L. Saslvaderi and R. Bilinton, “A comparision between two fundamentally different approaches to composite system reliability”, IEEE Trans. Pas., vol. 104, no. 12, pp. 3486–3492, 1985.

Composite Power System Reliability Analysis Application to the New Brunswick Power Corporation System, The draft report of the CIGRE Symposium on Electric Power System Reliability,Montreal,Canada, Sept. 16–18, 1991.

O. Bertoldi et al., “Adequancy avalluation: an application of ENEL’s SICRET program to new Brunswick Power System”, in CIGRE Simposium on Electric Power System Reliability, WG38.03/01,Montreal,Canada, 1991.

Iu.A. Chukreiev, Meshed Power System Reliability Estimation Models and Approaches. Syktyvkar: AS USSR Komi, 1995, 173 p. (in Russian).

Ie.I. Bardyk and M.V. Kosteriev, “Evaluation of probability of failure of electrical equipment in driving modes of electrical system”, in Proc. V Int. Sci. Conf. Managing Objects Modes of Electrical and Electromechanical Systems2011,Svyatogirsk,Ukraine, 2011, pp. 199–204 (in Ukrainian).

A.N. Nazarychev and D.A. Andreiev, Methods and Mathematical Models of Comprehensive Evaluation of Electrical Equipment. Ivanovo, Russia: IGEU, 2005, 224 p. (in Russian).

Ie.I. Bardyk and M.V. Kosteriev, “Parametric identification of fuzzy models of electrical equipment of electrical systems”, Enerhetyka: Ekonomika, Tekhnolohiyi, Ekolohiya, no. 1, pp. 78–89, 2011 (in Ukrainian).

K.-Y Cai, et al., “Fuzzy variables as a basic for a theory of fuzzy reliability in the possibility context”, Fuzzy Set and Systems, vol. 42, pp. 145–172, 1991.

A.N. Borysov et al., Decision-Making Based on Fuzzy Models: Use Examples. Riga, Latvia: Zinatne, 1990, 184 p.

Ie.I. Bardyk and O.S. Spotar, “Identification of failure probability function parameters of power equipment for power systems maintenance risk assessment”, in Proc. XIII Sci. Pract. Conf. Renewable Energy of XXI Century, Mykolaivka, Autonomous Republic ofCrimea, 2012, pp. 102–105 (in Ukrainian).

P.H. Bielov, Theoretical Framework of Systems Engineering of Security. Moscow, Russia: GN TP “Bezopasnost”, MIG STS, 1996, 424 p.

GOST Style Citations

  1. IAEA Nuclear Energy Series, № N6T38 Electric Greed Realiability and Interface with Nuclear Power Plants, 2012.

  2. Ciapessoni E., Cirio D., Gagleoti E.A. Probabilistic approach for operational risk assessment of power systems // CIGRE. – 2008. – P. 4–114.

  3. Скопинцев В.А. Оценка надежности электрических связей АЭС с энергосистемой для питания резервного трансформатора собственных нужд от внешних источников // Электроэнергетика России: современное состояние, проблемы и перспективы: Сб. науч. тр. / Под. ред. М.Ш. Мисриханова, Д.Р. Любарского, З.Л. Шунина. – М.: Энергоатомиздат, 2007. – 176 с.

  4. Бардик Є.І. Моделі оцінки надійності схем електропостачання власних потреб АЕС від незалежних зовнішніх джерел при нечітко заданих параметрах відмов електрообладнання // Праці Ін-ту електродинаміки НАНУ. – 2014. – Вип. 37. – С. 34–38.

  5. Бардик Є.І. Моделювання електроенергетичної системи для оцінки ризику виникнення аварій при відмовах елек­трообладнання // Наукові праці Донецького нац. техн. ун-ту. Сер. Електротехніка та енергетика. – 2013. – № 1(14). – С. 15–21.

  6. Костерєв М.В., Бардик Є.І. Питання побудови нечітких моделей оцінки технічного стану об’єктів електричних систем. – К.: НТУУ “КПІ”, 2010. – 131 с.

  7. Костерев Н.В., Бардик Е.И. Моделирование динамики АЭС в аварийных режимах снижения напряжения и частоты в системе собственных нужд // Техн. електродинаміка. Тем. вип. “Проблеми сучасної електротехніки”. – 2004. – Ч. 7. – С. 31–37.

  8. Saslvaderi L., Bilinton R. A comparision between two fundamentally different approaches to composite system reliability // IEEE Trans. Pas. – 1985. – 104, № 12. – P. 3486–3492.

  9. Composite power system reliability analysis application to theNew Brunswick power Corporation System: The draft report of the CIGRE Symposium on Electric Power System Reliability, Sept., 16–18, 1991, Monreal, Canada.

  10. Bertoldi O., Scalcino S., Salvaderi L. Adequancy avalluation:an application of ENEL’s SICRET program to new Brunswick Power System // CIGRE Simposium on Electric Power System Reliability,Montreal, 1991, WG38.03/01.

  11. Чукреев Ю.Я. Модели обеспечения надежности элетроэнергетических систем. – Сывтывкар: АН СССР Коми филиал, 1995. – 173 с.

  12. Бардик Є.І., Костерєв М.В., Литвинов В.В. Оцінка імовірності відмови електрообладнання при керуванні режимами електричної системи // Збірник праць V Міжнар. науково-техн. конф. “Керування режимами роботи об’єктів електричних та електромеханічних систем – 2011”. – Святогорськ, 2011. – С. 199–204.

  13. Назарычев А.Н., Андреев Д.А. Методы и математические модели комплексной оценки технического состояния электрооборудования. – Иваново: ИГЭУ, 2005. – 224 с.

  14. Бардик Є.І., Костерєв М.В., Литвинов В.В. Параметрична ідентифікація нечітких моделей електрообладнання електросистем // Енергетика: економіка, технології, екологія. – 2011. – № 1. – С. 78–89.

  15. Cai K.-Y., Wen C.-Y., Zhang, M.-L. Fuzzy variables as a basic for a theory of fuzzy reliability in the possibility cjntext // Fuzzy Set and Systems. – 1991. – 42. – P. 145–172.

  16. Борисов А.Н., Крумберг О.А., Федоров И.П. Принятие решений на основе нечетких моделей: примеры использования. – Рига: Зинатне, 1990. – 184 с.

  17. Бардик Є.І., Спотар О.С. Ідентифікація параметрів функцій розподілу імовірності відмов електрообладнання для оцінки експлуатаційного ризику електроенергетичних систем // Матеріали ХІІІ Міжнар. науково-практ. конф. “Відновлювана енергетика ХХІ століття”. – Миколаївка, 2012. – С. 102–105.

  18. Белов П.Г. Теоретические основы системной инженерии безопасности. – М.: ГН ТП “Безопасность”, МИГ СТС, 1996. – 424 с.

Copyright (c) 2017 NTUU KPI