Electromotive Force at Etching Homogeneous Magnetized Steel Cylinder in the Electrolyte

Authors

  • Oksana Gorobets
  • Yurij Gorobets
  • Volodymyr Rospotnyuk

DOI:

https://doi.org/10.20535/1810-0546.2013.1.90676

Abstract

In this paper, we calculate the electric cell voltage of the physical circuit at etching of ferromagnetic electrode in the form of a cylinder in an electrolyte caused by inhomogeneous distribution of concentration of the paramagnetic corrosion products on the surface of a steel cylinder in an inhomogeneous magnetostatic field. The shape of the electrode was chosen because all points of the cylinder surface are equivalent in this model system in the absence of magnetization and effects of the magnetic field can be easily separated from the effects of a different nature. The current density and Lorentz force are calculated in an electrolyte in the vicinity of the magnetized steel cylinder. The Lorentz force causes movement of an electrolyte perpendicular to the direction of the external magnetic field along the cylinder axis. Comparison of calculations with experimental data allows concluding that a certain part of paramagnetic ions in the electrolyte in a magnetic field represents the nanoclusters of paramagnetic ions, which can be for example nanobubbles. The results of the theoretical modeling can be used for creating functional materials by means of magnetoelectrolysis and for modeling of the influence of the biogenic magnetic nanoparticles on transport processes and biochemical reactions in cells of live organisms.

References

1. Y.C. Tang and A.J. Davenport, “Magnetic field effects on the corrosion of artificial pit electrodes and pits in thin films”, J. Electrochem. Soc., vol. 154, no. 7, pp. 362— 370, 2007.

2. R. Sueptitz et al., “Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions”, Electrochimica Acta, vol. 54, no. 8, pp. 2229—2233, 2009.

3. I. Costa et al., “The effect of the magnetic field on the corrosion behavior of Nd—Fe—B permanent magnets”, J. Magn. Magn. Mater., vol. 278, no. 3, pp. 348—358, 2004.

4. M.D. Pullins et al., “Microscale confinement of paramagnetic molecules in magnetic field gradients surrounding ferromagnetic microelectrodes”, J. Phys. Chem. B, vol. 105, no. 37, pp. 8989—8994, 2001.

5. O.Yu. Gorobets and D.O. Derecha, “Quasi-periodic microstructuring of iron cylinder surface under its corrosion in the combined electric and magnetic fields”, Mater. Sci., vol. 24, no. 4, pp. 1017—1025, 2007.

6. O.Yu. Gorobets et al., “Nickel Electrodeposition under Influence of Constant Homogeneous and High-Gradient Magnetic Field”, J. Phys. Chem. C, vol. 112, no. 9, pp. 3373—3375, 2008.

7. S.V. Gorobets et al., “Periodic microstructuring of iron cylinder surface in nitric acid in a magnetic field”, Appl. Surf. Sci., vol. 252, no. 2, pp. 448—454, 2005.

8. M.Yu. Ilchenko et al., “Influence of external magnetic field on the etching of a steel ball in an aqueous solution of nitric acid”, J. Magn. Magn. Mater., vol. 322, pp. 2075—2080, 2010.

9. S.V. Gorobets et al., “Influence of Magnetostatic Fields of a Ferromagnetic Substrate on the Electrodeposition of Nickel Dendrites”, Phys. Metals Metallogr., vol. 113, no. 2, pp. 129—134, 2012.

10. Феттер К. Электрохи

мическая кинетика. — М.: Химия, 1967. — C. 5 —55.

Антропов Л.І. Теоретична електрохімія. — К.: Либідь, 1993. — C. 195—200.

Ландау Л.Д., Лифшиц М.Л. Статистическая физика. Ч. 1. — М.: Наука, 1976. — С. 138—143.

Ахиезер А.И., Барьяхтар В.Г., Пелетминский С.В. Спиновые волны. — М.: Наука, 1967. — 368 с.

Ландау Л.Д., Лифшиц М.Л. Электродинамика сплошных сред. — М.: Физматлит, 2001. — С. 336—337.

Горобець О.Ю., Горобець Ю.І., Роспотнюк В.П. Електрорушійна сила при травленні однорідно намагніченої кулі в електроліті // Металлофиз. новейшие технол. — 2012. — № 34. — С. 895—906.

M. Fujiwara et al., “On the movement of paramagnetic ions in an inhomogeneous magnetic field”, J. Phys. Chem. B, no. 108, pp. 3531—3534, 2004.

J.Y. Kim et al., “Zeta potential of nanobubbles generated by ultrasonication in aqueous alkyl polyglycoside solutions”, J. Colloid Interface Sci., vol. 223, no. 2, pp. 285— 291, 2000.

18. P. Attard et al., “Nanobubbles: the big picture”, Physica A, vol. 314, pp. 696—705, 2002.

19. N. Ishda et al., “Attraction between hydrophobic surfaces with and without gas phase”, Langmuir, vol. 16, pp. 6377— 6380, 2000.

20. J.W.G. Tyrrell and P. Attard, “Atomic force microscope images of nanobubbles on a hydrophobic surface and corresponding force-separation data”, Ibid, vol. 18, pp. 160— 167, 2002.

21. R.F. Considine et al., “Forces measured between latex spheres in aqueous electrolyte: Non-DLVO behavior and sensitivity to dissolved gas”, Ibid, vol. 15, pp. 1657—1659, 1999.

22. J. Mahnke et al., “The influence of dissolved gas on the interactions between surfaces of different hydrophobicity in aqueous media”, Phys. Chem. Chem. Phys., vol. 1, pp. 2793—2798, 1999.

23. N. Ishida et al., “Attraction between hydrophobic surfaces with and without gas phase”, Langmuir, vol. 16, pp. 5681— 5687, 2000.

24. G.E. Yakubov et al., “Interaction forces between hydrophobic surfaces. Attractive jump as an indication of formation of “stable” submicrocavities”, J. Phys. Chem. B, vol. 104, pp. 3407—3410, 2000.

25. Харнед Г., Оуэн Б. Физическая химия растворов электролитов. — М.: Издатинлит, 1952. — C. 141.

26. Колли Р. А. Исследование одного случая работы гальванического тока // Журнал русского физико-химического общества. — 1875. — № 7. — C. 333—337.

Published

2013-02-28

Issue

Section

Art