Defining Parameters of Quality Mobile Network Technology LTE/MVNO with Tensor Analysis
DOI:
https://doi.org/10.20535/1810-0546.2013.1.90666Abstract
The paper under scrutiny proposes the sequence of actions for characterizing the quality parameters of the mobile network LTE/MVNO for convenient configuration of network connections of objects. To determine the quality parameters of the network LTE/MVNO tensor decomposition of the network architecture we employ the method for obtaining the optimal configuration of the network connections of objects for preset values of packet delay using the criterion of the maximum capacity. To consider more complex network topology and architecture using tensor decomposition we propose to divide it into subnets for further research and obtaining findings for each subnet in isolation and the network as a whole. We determine the parameters of the quality of the network LTE/MVNO such as bandwidth, packet queue length in the path, the contours of the network nodes for each subnet and the network as a whole. The resulting tensor method can be used for a variety of networking tasks taking into account the complexity of the architecture and topology with specificity of functioning of the protocols used.References
Тихвинский В.О., Терентьев С.В., Юрчук А.Б. Сети мобильной связи LTE. Технологии и архитектура. – М.: Эко-Трендз, 2010. – 284 с.
3GPP TS 23.002 3rd Generation Partnership Project, Technical Specification Group Services and Systems Aspects; Network architecture (Release 8,9), 2010, 94 р.
Крон Г. Тензорный анализ сетей: Пер. с англ. – М.: Сов. радио,1978. – 720 с.
Клейнрок Л. Теория массового обслуживания / Пер. с англ. – М.: Машиностроение, 1979. – 432 с.
Петров А.Е. Тензорная методология в теории систем. – М.: Радио и связь, 1985. – 152 с.
Стрелковская И.В. Тензорная модель исследования сети массового обслуживания // Цифрові технології: Зб. наук. пр. – Одеса, 2010. – Вип. 10. – С. 82–90.
Стрелковская И.В. Тензорный анализ качественных характеристик сети массового обслуживания // Зб. наук. пр. ОНАЗ ім. О.С. Попова. – Одеса, 2010. – Вип. 2. – С. 20–25.
Сохор Ю.Н. Вычислительные модели и алгоритмы тензорного анализа сетей: Учеб. пособие. – Псков: ПГПИ, 2008. – С. 115.
Downloads
Published
Issue
Section
License
Copyright (c) 2013 NTUU KPI Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work