Parameters Optimization of the Imager’s Lens and Microbolometer Matrix

Authors

  • Валентин Георгійович Колобродов National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine

DOI:

https://doi.org/10.20535/1810-0546.2015.1.88548

Keywords:

Thermal imager, Resolution, Efficient spatial bandwidth, Modulation transfer function

Abstract

The relation between the radius of the lens aberration circle of confusion and the array period of thermal detector matrix is established, which provides the best image quality. Thermal imaging is determined by the spatial resolution and contrast. This fact has allowed us to offer new evaluation criterion for the thermal imager effectiveness – efficient spatial bandwidth, which is determined by the product of the Nyquist frequency and modulation transfer function (MTF) of the thermal imager at this frequency. We consider two criteria to match MTF lens matrix and the radiation detector, which allowed us to estimate the influence of the lens radius of the circle of confusion and the detector matrix period on thermal image quality. An example of application criteria considered for assessing the operation effectiveness of thermal imager with 25 micron pixels microbolometer arrays. It was showed, that the use of a diffraction-limited lens with a relative aperture 1:1 improves the picture quality by 19 % compared with a lens that has the same with detector’s MTF at 0.5. It has been established that use of 17 microns imager matrix can improve image quality by 22 % in comparison with thermal matrix, which has a period of 25 microns.

Author Biography

Валентин Георгійович Колобродов, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Valentyn. G. Kolobrodov

doctor of engineering, professor

References

Тарасов М.М., Якушенков Ю.Г. Инфракрасные системы “смотрящего типа”. – М.: Логос, 2004. – 444 с.

Современные медицинские тепловизоры / Г.С. Мель­ников, В.М. Самков, Ю.И. Солдатов, В.В. Коротаев //Тепловидение в медицине и промышленности: Матер. IX Междунар. конф. “Прикладная оптика –2010”, Санкт-Петербург, 18–22 окт. 2010 г. – СПб, 2010. – С. 11–17.

H. Kaplan, Practical applications of infrared and imaging equipment. SPIE, Bellingham, Washington, USA, 1999, 164 p.

Иваницкий Г.В. Современное матричное тепловидение в биомедицине // Успехи физ. наук. – 2006. – 176, № 12. – С. 1295–1320.

Ллойд Дж. Системы тепловидения / Пер. с англ. – М.: Мир, 1978. – 416 с.

Колобродов В.Г., Лихоліт М.І. Проектування тепловізійних і телевізійних систем спостереження: Підручник. – К.: НТУУ “КПІ”, 2007. – 364 с.

Published

2015-03-04

Issue

Section

Art