The Influence of the Axial Anisotropy of Scattering Biological Media on the Accuracy of Determination the Optical Coefficients by Monte-Carlo Method

Наталя Василівна Безугла, Михайло Олександрович Безуглий, Григорій Семенович Тимчик, Констянтин Петрович Вонсевич


The influence of the axial anisotropy of the scattering by biological media on the accuracy of determination the оptical coefficients of diffuse reflection and total transmission was considered in this work. The propagation of optical radiation in the turbid media by direct Monte Carlo for samples with different thickness in vitro at the wavelength of laser radiation 632.6 nm was simulated. Non-axial symmetry of phase function of scattering for thickest samples was confirmed by the results of the diametrically sections of photometric images analysis, which were obtained by the method of ellipsoidal reflectors. The asymmetry of the axial anisotropy of scattering, which was characterized experimentally by determined factor of the thickest biological tissue anisotropy on sections and direct Monte Carlo for sample of porcine muscle thickness of 1.4 ± 0.02 mm. It has showed the possibility of displacement of diffuse reflectance at 23 % and the ratio of its total transmission by 20 %, and of breast muscle of chicken thickness 0.76 ± 0.02 mm – quadruple and double displacement, respectively. The results emphasize the need for developing the method of spatial photometry of biological media that implements the research of light fluxes within the solid angle 4π.


Anisotropy of the scattering; Method of Monte Carlo; Method of ellipsoidal reflectors; Method of spatial photometry


Тучин В.В. Лазеры и волоконная оптика в биомедицинских исследованиях. – М.: Физматлит, 2010. – 500 с.

Тучин В.В. Оптическая биомедицинская диагностика. Т.1. – М.: Физматлит, 2007. – 560 с.

G. Hall and S. L. Jacoques, “Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient”, Biomedical optics express, vol. 3, no. 11, pp. 2707–2719, 2007.

Барабаненков Ю.Н. Многократное рассеяние волн на ансамбле частиц и теория переноса излучения // Успехи физ. наук. – 1975. – № 117(1). – С. 49–77.

Иссимару А. Распространение и рассеяние волн в случайно неоднородных средах. В 2-х т. – М.: Мир, 1981.

S.L. Jacques et al., “Angular Dependence of He Ne Laser Light Scattering by Human Dermis”, Lasers in the Life Sciences, vol. 1, no. 4, pp. 309–334, 1987.

M.A. Bezuglyi et al., “On the possibility of applying a mirror ellipsoid of revolution to determining optical properties of biological tissues”, Optics and Spectroscopy, vol. 113, no. 1, pp. 101–107, 2012.

M.A. Bezuglyi and N.V. Pavlovets, “Optical biometry of biological tissues by ellipsoidal reflectors”, in Proc. OSA-SPIE 8798, May 2013.

S.A. Prahl et al., “A Monte Carlo Model of Light Propagation in Tissue”, Dosimetry of Laser Radiation in Medicine and Biology, SPIE Institute Ser., vol. 5, pp. 102–111, 1989.

W.F. Cheong et al., “A review of optical properties of biological tissues”, J. Quantum Electronics, vol. 5, no. 12, pp. 2166–2239, 1990.

N.V. Bezuglaya and M.A. Bezuglyi, “Spatial Photometry of Scattered Radiation by Biological Objects”, in Proc. SPIE 9032-15, V2, pp. Q1–Q5, 2013.

Спосіб визначення фазової функції біологічних середовищ: Деклараційний патент України на корисну модель № 75382 / Н.В. Безугла, О.В. Кузьменко, М.О. Безуглий, Ю.В. Чмир. – 26 листопада, 2012.

GOST Style Citations





  • There are currently no refbacks.

Copyright (c) 2016 NTUU KPI