Electrophysical Properties of Melted Carbide ТіС, ZrC, NbC in the Range of its Homogeneity

Анатолій Миколайович Степанчук, Ліна Олегівна Бірюкович


Structure and same electrical properties of carbides of titanium, zirconium and niobium were tested in region of  homogeneity. Samples of these carbides processed in the arc furnace using consumable electrodes. These samples were mono-phase, had not porosity and had minimum content of impurities of oxygen and carbon. It was found, that properties such as electrical resistivity, thermal resistance coefficient, Hall’s coefficient, concentration and mobility of charge carriers of these carbide phases vary depending on the content impurities of carbon in region of homogeneity and place of metals to create of carbides in periodic table. The nature of carbides analyses from positions of model of solid state. The base of this model is configuration of localization of valence electrons of atoms. Changing the properties of carbide phases depends on the ratio between the forces of bonds Me–C and Me–Me, which depends on the degree of stabilization sp3-configuration. And the degree of stabilization is depending from  donor’s ability of metal which create carbide and from ratio between atoms of metal and carbon. It was established, that absolute values of properties that have been investigated similar to the values of the properties of single-crystal samples. This indicates a more ordered crystalline lattice fused refractory compounds, as well as less impurity content and absence porosity.


Refractory compounds; Melted carbides; Electrical resistivity; Hall’s effect; Structure; Lattice parameter; Electronic configuration; Range of homogeneity


H. Berns and B. Wewers, “Development of an abrasion resistant steel composite with in situ TiC particles”,

Wear, no. 251, pp. 1386–1395, 2001.

Soon-Gi Shin, “Experimental and Simulation Studies on Grain Growth in TiC and WC-based Cermets during Liquid Phase Sintering”, Metals and Materials, vol. 6, no. 3, pp. 195–201, 2000.

Порошковая металлургия. Материалы, технология, свойст­ва, области применения: Справочник / И.М. Федорченко, И.Н. Францевич, И.Д. Радомы-сельский и др.; отв. ред. И.М. Федорченко. – К.: Наук. думка, 1985. – 624 с.

Aiguo Liu et al., “Microstructures and wear resistance of large WC particles reinforced surface metal matrix com­po­sites produced by plasma melt injection”, Surface & Coatings Technol., no. 201, pp. 7978–7982, 2007.

Самсонов Г.В., Упадхая Г.Ш., Нешпор В.С. Физическое материаловедение карбидов. – К.: Наук. думка, 1974. – 455 с.

Степанчук А.Н. Плавленые тугоплавкие соединения для инструментальных материалов // Оборудование и инструмент для профессионалов. – 2008. – № 6. – С. 52–56.

Степанчук А.Н. Прочностные и абразивне свойства плавленых тугоплавких соединений и инструментальных материалов на их основе // Современные спеченные твердые сплавы. – К.: ИСМ им. В. Н. Бакуля НАН Украины, 2008. – С. 269–280.

Полищук В.С. Интенсификация процессов получения карбидов, нитридов и композиционных материалов на их основе. – Севастополь: Вебер, 2003. – 327 с.

Самсонов Г.В., Прядко И.Ф., Прядко Л.Ф. Конфигурационная модель вещества. – К.: Наук. думка, 1971. – 232 с.

Самсонов Г.В., Прядко И.Ф. Полузаполненные конфигурации и их симметрия // Неоднородные диэлектрики. – К.: УкрНИТИ, 1970. – С. 70–75.

L. Bruwer, “Bonding and Structures of Transition Me­tals”, Science, no. 161, pp. 115–122, 1968.

Божко С.А. Исследование рекристаллизации тугоплавких карбидов в области их гомогенности: Автореф. дис… канд. техн. наук. – К., ИПМ,1971. – 24 с.

Самсонов Г.В., Божко С.А. Исследование рекристаллизации при спекании порошков карбидов ниобия и титана // Порошковая металлургия. – 1969. – № 7. – С. 30–34.

Самсонов Г.В., Упадхая Г.Ш. Физические свойства монокарбидов переходных металлов в области их гомогенности // Там же. – 1969. – № 5. – С. 69–72.

Пирсон У.Б. Сверхчистые металлы. – М.: Металлургиздат, 1966. – 325 с.

GOST Style Citations



Copyright (c) 2016 NTUU KPI