Ozone and Hydrogen Peroxide Influence on Intensification of Biological and Physical and Chemical Components of the Iron and Manganese Removal from Water

Олександр Валерійович Кравченко

Abstract


Background. Compounds of iron and manganese are the most common components that are present in groundwater of nearly all regions of Ukraine. Elevated concentrations of iron and manganese cause deterioration of the organoleptic properties of water, leading to the formation of precipitates, overgrown water supply and water intake valves. Therefore, there is a need to improve existing technologies to extract these elements from the water.

Objective. The aim is to determine the effects of oxidants – ozone and hydrogen peroxide – at doses that are not sufficient for disinfection (0.25–3.0 mg/dm3), compared with the oxygen for iron and manganese removal from water through filtration on the zeolite filters.

Methods. The research was conducted on iron-bearing groundwater. Water is treated with oxygen at the laboratory unit, which consists of aerator closed contact capacity and free-flow filter with zeolite loading. Water ozonation at manganese removal on zeolite filter was conducted in Drexel glasses, which acted ozone-air mix with ozone generator. In experiments with hydrogen peroxide in a container of water was added a solution of said reagent in various concentrations, then the mixture was mixed and lodged in the filter.

Results. It is shown that at concentrations of oxidants 0.25 and 0.5 mg/dm3 biological processes are dominated. From a technological point of view, it is possible to achieve the same depth cleaning at both low and higher doses of ozone. The implementation process in such circumstances would achieve significant savings of ozone and therefore electricity needed for its formation.

Conclusions. The conclusions about the fundamental possibility of intensifying the process of removing compounds of iron and manganese from water through water treatment by ozone in small doses, followed by filtration through a layer of zeolite loadings are carried out. In this regard ozone promotes more efficient removal of water manganese, which is usually quite difficult technological challenge.


Keywords


Ozone; Hydrogen peroxide; Iron removal; Manganese removal

References


A. Farkas et al., “Microbial activity in drinking water-associated biofilms”, Cent. Eur. J. Biol., vol. 8, no. 2, pp. 201–214, 2013. doi: 10.2478/s11535-013-0126-0

W.W.J.M. de Vet et al., “Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions”, Water Res., vol. 45, no. 17, pp. 5389–5398, 2011. doi: 10.1016/j.watres.2011. 07.028

G.A. Dubinina et al., “Modelling and optimization of processes for removal of dissolved heavy-metal compounds from drinking water by microbiological methods”, Water Res., vol. 39, no. 4, pp. 398–404, 2012. doi: 10.1134/s0097807812030037

L.Z. Feng Ping Hu et al., “Purification efficiency study of biological treatment of iron and manganese for groundwater”, Adv. Mater. Res., vol. 599, pp. 383–386, 2012. doi: 10.4028/www.scientific.net/AMR.599.383

A. Gülay et al., “Internal porosity of mineral coating supports microbial activity in rapid sand filters for groundwater treatment”, Appl. Environ. Microbiol., vol. 80, no. 22, pp. 7010–7020, 2014. doi: 10.1128/AEM.01959-14

D.A. Reckhow et al., “Oxidation of iron and manganese by ozone”, Ozone Sci. Eng., vol. 13, no. 6, pp. 675–695, 1991. doi: 10.1080/01919512.1991. 10555708

O.V. Kravchenko, “Oxidizing agents testing for the intensification of the biological components of the iron and manganese removal from water”, Naukovi Visti NTUU KPI, no. 3, pp. 42–47, 2016 (in Ukrainian). doi: 10.20535/1810-0546.2016.3.65600

A. Banh et al., “Manganese (Mn) oxidation increases intracellular Mn in Pseudomonas putida GB-1”, PLoS One, vol. 8, no. 10, pp. 1–8, 2013. doi: 10.1371/ journal.pone.0077835

O.M. Kvartenko, “The use of fixed microflora for cleaning groundwater with high iron content”, Ph.D. dissertation, Rivne, Ukraine, 1997 (in Ukrainian).

L.E. Sheinkman et al., “Establishment of patterns of concentration decrease of iron and manganese in iron-bearing waters at oxidation by ozone for improvement of water preparation technologies”, Fundamentalnyie Issledovaniya, vol. 5, no. 2, pp. 675–695, 2015 (in Russian).

V.V. Dzyuba et al., “Ozonation at demanganation and iron removal from groundwater in the Siberian region”, Voda: Himiya i Ekologiya, no. 2, pp. 25–32, 2011 (in Russian).

R. El Araby et al., “Treatment of iron and manganese in simulated groundwater via ozone technology”, Desalination, vol. 249, no. 3, pp. 1345–1349, 2009. doi: 10.1016/j.desal.2009.05.006

D. Gregory et al., “Ozonation of dissolved manganese in the presence of natural organic matter”, Ozone Sci. Eng., vol. 23, no. 2, pp. 149–159, 2001. doi: 10.1080/01919510108961997

O.V. Kravchenko, “The role of microorganisms at removal from water high content of iron and manganese on filters with zeolite loading”, Visnyk NUVHP. Ser. Tekhnichni Nauky, vol. 1, no. 69, pp. 58–65, 2015 (in Ukrainian).


GOST Style Citations


  1. Microbial activity in drinking water-associated / A. Farkas, M. Dragan-Bularda, V. Muntean et al. // Cent. Eur. J. Biol. – 2013. – № 2. – P. 201–214. doi: 10.2478/s11535-013-0126-0
     
  2. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions / W.W.J.M. de Vet, I.J.T. Dinkla, L.C. Rietveld, M.C.M. van Loosdrecht // Water Res. – 2011. – № 17. – P. 5389–5398. doi: 10.1016/ j.watres.2011.07.028
     
  3. Modelling and optimization of processes for removal of dissolved heavy metal compounds from drinking water by microbiological methods / G.А. Dubinina, A.Yu. Sorokina, A.E. Mysyakin et al. // Water Resources. – 2012. – № 4. – P. 398–404. doi: 10.1134/s0097807812030037
     
  4. Hu F.P., He W., Tang C.C. Purification efficiency study of biological treatment of iron and manganese for groundwater // Adv. Mater. Res. – 2012. – № 599. – P. 383–386. doi: 10.4028/www.scientific.net/AMR.599.383
     
  5. Internal porosity of mineral coating supports microbial activity in rapid sand filters for groundwater treatment / A. Gülay, K. Tatari, S. Musovic et al. // Appl. Environ. Microbiol. – 2014. – № 22. – P. 7010–7020. doi: 10.1128/AEM.01959-14
     
  6. Oxidation of iron and manganese by ozone / D.A. Reckhow, W.R. Knocke, M.J. Kearney et al. // Ozone Sci. Eng. – 1991. – № 6. – P. 675–695. doi: 10.1080/01919512.1991.10555708
     
  7. Кравченко О.В. Застосування окисників для інтенсифікації біологічної складової процесів знезалізнення і деманганації води // Наукові вісті НТУУ “КПІ”. – 2016. – № 3. – С. 42–47. doi: 10.20535/1810-0546.2016.3.65600
     
  8. Manganese (Mn) oxidation increases intracellular Mn in Pseudomonas putida GB-1 / A. Banh, V. Chavez, J. Doi et al. // PLoS One. – 2013. – № 10. – P. 1–8. doi: 10.1371/journal.pone.0077835
     
  9. Квартенко О.М. Використання закріпленої мікрофлори для очистки підземних вод з підвищеним вмістом заліза: Aвтореф. дис. … канд. техн. наук. – Рівне, 1997. – 23 с.
     
  10. Установление закономерностей снижения концентрации железа и марганца в железосодержащих водах при окислении озоном для совершенствования технологий водоподготовки / Л.Э. Шейнкман, Д.В. Дергунов, Л.Н. Савинова, А.Е. Четверикова // Фундаментальные исследования. – 2015. – № 2. – C. 345–350.
     
  11. Дзюбо В.В., Алферова Л.И. Озонирование при обезжелезивании-деманганации подземных вод в Сибирском регионе // Вода: химия и экология. – 2011. – № 2. – C. 25–32.
     
  12. El Araby R., Hawash S., El Diwani G. Treatment of iron and manganese in simulated groundwater via ozone technology // Desalination. – 2009. – № 3. – P. 1345–1349. doi: 10.1016/j.desal.2009.05.006
     
  13. Gregory D., Carlson K. Ozonation of dissolved manganese in the presence of natural organic matter // Ozone Sci.Eng. – 2001. – № 2. – P. 149–159. doi: 10.1080/01919510108961997
     
  14. Кравченко О.В. Роль мікроорганізмів при видаленні із води високих концентрацій заліза на фільтрах з цеолітовим завантаженням // Вісник НУВГП. Сер. Технічні науки. – 2015. – № 1. – С. 58–65.




DOI: https://doi.org/10.20535/1810-0546.2016.6.84142

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 NTUU KPI