Efficiency of Steady Motion and Its Improvement with the Use of Unseparated and Supercavitating Flow Patterns

Ігор Георгійович Нестерук


Background. The efficiency of the steady subsonic motion of vehicles and animals in air and water is estimated with the use of different drag coefficients, the drag-to-weight and power-to-weight ratios.

Objective. The improvement of these characteristics with the use of special shaped hulls and wing profiles which remove boundary layer separation and with the use of the supercavitating flow pattern for the high-speed motion in water.

Methods. Analytical and numerical estimations with the use of known results for flow on slender unseparated body of revolution and airfoil and for the steady supercavitating flow pattern.

Results. Simple analytic formulae were obtained for the movement efficiency, the critical Reynolds numbers of the laminar-to-turbulent transition etc. and applied for different terrestrial, aquatic and airborne vehicles, animals and human sport activity. In a rather large range of the Reynolds number \[10^{6}\leqslant \textrm{Re}_{V}\leqslant 10^{8},\] the use of unseparated shapes yields very substantial reduction of the drag in comparison with the conventional bodies of revolution. In water at \[\textrm{Re}_{V}> 10^{7}\] the supercavitating flow pattern can be preferable.

Conclusions. This drag reduction opens up prospects for designing different kinds of very effective airborne and high-speed underwater vehicles.


Unseparated shapes; Drag reduction; Laminar-to-turbulent transition; Supercavitation; Drag-to-weight ratio; Power-to-weight ratio

Full Text:



China’s Supersonic Submarine, which could go from Shanghai to San Francisco in 100 Minutes, Creeps ever Closer to Reality [Online]. Available: http://www.extremetech.com/extreme/188752-chinas-supersonic-submarine-which-could-gofrom-shanghai-to-san-francisco-in-100-minutes-creeps-ever-closer-to-reality

Worlds Smallest RC Drone Nano Quad Copter [Online]. Available: http://www.clubit.tv/2014/12/worlds-smallest-rc-drone-nano-quad-copter-2/

I. Nesteruk, “Rigid bodies without boundary-layer separation”, Int. J. Fluid Mech. Res., vol. 41, no. 3, pp. 260–281, 2014. doi: 10.1615/InterJFluidMechRes.v41.i3.50

I. Nesteruk et al., “Shape of aquatic animals and their swimming efficiency”, J. Marine Biology, article ID 470715, 2014. doi: 10.1155/2014/470715

Yu.N. Savchenko, “Perspectives of the supercavitation flow applications”, in Proc. Int. Conf. Superfast Marine Vehicles Moving Above, Under and in Water Surface (SuperFAST’2008), 2–4 July2008, St. Petersburg, Russia.

I. Nesteruk, “Drag drop on high-speed supercavitating vehicles and supersonic submarines”, Applied Hydromechnics, vol. 17, no. 4, pp. 52–57, 2015. Available: http://hydromech.org.ua/content/pdf/ph/ph-17-4%2852-57%29.pdf

S.F. Hoerner, Fluid-Dynamic Drag. Midland Park, N.J, 1965.

L.G. Loitsyanskiy, Mechanics of Liquids and Gases, 6th ed. New York, Wallingford: Begell House, 1995.

P.R. Garabedian, “Calculation of axially symmetric cavities and jets”, Pac. J. Math., vol. 6, no. 4, pp. 611–684, 1956.

I. Nesteruk, “Drag calculation for slender cones using the second approximation for created by them cavities”, Applied Hydromechanics, vol. 5, no. 1, pp. 42–46, 2003 (in Ukrainian).

I. Nesteruk, “Drag effectiveness of supercavitating underwater hulls”, in Supercavitation, I. Nesteruk, Ed. Springer, 2012, pp. 79–106.

I. Nesteruk, “On the shape of a slender axisymmetric cavity in a ponderable liquid”, Fluid Dynamics, vol. 14, no. 6, pp. 923–927, 1979. doi: 10.1007/BF01052000

I. Nesteruk, “Some problems of axisymmetric cavitation flows”, Fluid Dynamics, vol. 17, no. 1, pp. 21–27, 1982. doi: 10.1007/ BF01090694

I. Nesteruk, “Influence of the flow unsteadiness, compressibility and capillarity on long axisymmetric cavities”, in Proc. 5th Int. Symposium on Cavitation (Cav2003), Osaka, Japan, 2003.

Y. Gabrielly and Th. von Karman, “What price speed?”, Mechanical Eng., vol. 72, no. 10, pp. 775–779, 1950.

F. Saibene and A.E. Minetti, “Biomechanical and physiological aspects of legged locomotion in humans”, Eur. J. Appl. Physiol., vol. 88, pp. 297–316, 2003. doi: 10.1007/s00421-002-0654-9

I. Nesteruk, “Reserves of the hydrodynamical drag reduction for axisymmetric bodies”, Bulletin of Kiev University. Ser. Physics & Mathematics, no.1, pp. 112–118, 2002.

A. Seifert et al., “Active separation control: an overview of Reynolds and Mach numbers effects”, Aerosp. Sci. Technol., vol. 8, pp. 569–582, 2004. doi: 10.1016/j.ast.2004.06.007

F.R. Goldschmied, “Integrated hull design, boundary layer control and propulsion of submerged bodies: Wind tunnel verification”, in Proc. AIAA/SAE/ASME 18th Joint Propulsion Conf., pp. 3–18, 1982.

K.-S. Choi et al., “Turbulent boundary-layer control with plasma actuators”, Phil. Trans. Royal Soc., vol. 369, pp. 1443–1458, 2011. doi: 10.1098/rsta.2010.0362

L.D. Landau and E.M. Lifshits, Fluid Mechanics, 2nd ed., vol. 6, Course of Theoretical Physics. Butterworth-Heinemann, 1987.

I. Nesteruk, “Peculiarities of turbulization and separation of boundary-layer on slender axisymmetric subsonic bodies”, Naukovi Visti NTUU KPI, no. 3, pp. 70–76, 2002 (in Ukrainian).

O.A. Buraga et al., “Comparison of slender axisymmetric body drag under unseparated and supercavitational flow regimes”, Int. J. Fluid Mech. Res. vol. 33, no. 3, pp. 255–264, 2006. doi: 10.1615/InterJFluidMechRes.v33.i3.40

I. Nesteruk, “Partial cavitation on long bodies”, Applied Hydromechanics, vol. 6, no. 3, pp. 64–75, 2004 (in Ukrainian).

M. Lorant, “Investigation into high-speed of underwater craft”, Nautical Magazine, vol. 200, no. 5, pp. 273–276, 1968.

J.C. Sprott. Energetics of Walking and Running [Online]. Available: http://sprott.physics.wisc.edu/technote/walkrun.htm

Bottlenose Dolphin Tursiops Truncatus [Online]. Available: http://www.speedofanimals.com/animals/bottlenose_dolphin

Automobile Drag Coefficient [Online]. Available: https://en.wikipedia.org/wiki/Automobile_drag_coefficient

Eco-Runner Team Delft [Online]. Available: https://en.wikipedia.org/wiki/Eco-Runner_Team_Delft

Aptera 2 Series [Online]. Available: https://en.wikipedia.org/wiki/Aptera_2_Series

Formula One Сar [Online]. Available: https://en.wikipedia.org/wiki/Formula_One_car

Antonov An-225 Mriya [Online]. Available: https://en.wikipedia.org/wiki/Antonov_An-225_Mriya

Lift-to-Drag Ratio [Online]. Available: https://en.wikipedia.org/wiki/Lift-to-drag_ratio

Solar Impulse [Online]. Available: https://en.wikipedia.org/wiki/Solar_Impulse

Underwater Glider [Online]. Available: https://en.wikipedia.org/wiki/Underwater_glider

Hybrid Air Vehicles HAV 304 Airlander 10 [Online]. Available: https://en.wikipedia.org/wiki/Hybrid_Air_Vehicles_ HAV_304_ Airlander_10

Flight of The Bumble Bee is Based More on Brute Force than Aerodynamic Efficiency [Online]. Available: https://www.sciencedaily.com/releases/2009/05/090507194511.htm

Albatross [Online]. Available: http://animals.nationalgeographic.com/animals/birds/albatross/

Albatross [Online]. Available: https://en.wikipedia.org/wiki/Albatross

R.J. Templin and S. Chatterjee, Posture, locomotion, and paleoecology of pterosaurs. Boulder, Colorado: Geological Society of America, 2004, pp. 56–60.

VA-111 Shkval [Online]. Available: https://en.wikipedia.org/wiki/VA-111_Shkval

Spearfish Torpedo [Online]. Available: https://en.wikipedia.org/wiki/Spearfish_torpedo

Mark 48 Torpedo [Online]. Available: http://www.wow.com/wiki/Mark_48_torpedo

GOST Style Citations

  1. http://www.extremetech.com/extreme/188752-chinas-supersonic-submarine-which-could-gofrom-shanghai-to-san-francisco-in-100-minutes-creeps-ever-closer-to-reality

  2. http://www.clubit.tv/2014/12/worlds-smallest-rc-drone-nano-quad-copter-2

  3. Nesteruk I. Rigid bodies without boundary-layer separation // Int. J. Fluid Mech. Res. – 2014. – 41. – P. 260–281. doi: 10.1615/ InterJFluidMechRes.v41.i3.50

  4. Nesteruk I., Passoni G., Redaelli A. Shape of aquatic animals and their swimming efficiency // J. Marine Biology. – 2014. – Article ID 470715. doi: 10.1155/2014/470715

  5. Savchenko Yu.N. Perspectives of the supercavitation flow applications // Int. Conf. SuperFAST’2008, July 2–4,2008, St. Petersburg, Russia.
  6. Nesteruk I. Drag drop on high-speed supercavitating vehicles and supersonic submarines // Прикладна гідромеханіка. – 2015. – 17, № 4. – С. 52–57. – http://hydromech.org.ua/content/pdf/ph/ph-17-4%2852-57%29.pdf

  7. Hoerner S.F. Fluid-dynamic drag. – N.J.: Midland Park, 1965. – 416 p.

  8. Loitsyanskiy L.G. Mechanics of Liquids and Gases. – 6th ed. – New York and Wallingford: Begell House, 1995. – 961 p.

  9. Garabedian P.R. Calculation of axially symmetric cavities and jets // Pac. J. Math. – 1956. – 6, № 4. – P. 611–684.

  10. Нестерук І.Г. Розрахунок опору тонких конусів з використанням другого наближення для форми утворених ними каверн // Прикладна гідромеханіка. – 2003. – 5 (77), № 1. – С. 42–46.

  11. Nesteruk I. Drag effectiveness of supercavitating underwater hulls // Supercavitation / I. Nesteruk, Ed. – Springer, 2012. –  P. 79–106.

  12. Nesteruk I. On the shape of a slender axisymmetric cavity in a ponderable liquid // Fluid Dynamics. – 1979. – 14, № 6. – P. 923–927. doi: 10.1007/BF01052000

  13. Nesteruk I. Some problems of axisymmetric cavitation flows // Fluid Dynamics. – 1982. – 17, № 1. – P. 21–27. doi: 10.1007/ BF01090694

  14. Nesteruk I. Influence of the flow unsteadiness, compressibility and capillarity on long axisymmetric cavities // 5th Int. Symposium on Cavitation, 2003, Osaka, Japan.

  15. Gabrielly Y., von Karman Th. What price speed // Mech. Eng. – 1950. – 72, № 10. – P. 775–779.

  16. Saibene F., Minetti A.E. Biomechanical and physiological aspects of legged locomotion in humans // Eur. J. Appl. Physiol. – 2003. – 88. – P. 297–316. doi: 10.1007/s00421-002-0654-9

  17. Nesteruk I. Reserves of the hydrodynamical drag reduction for axisymmetric bodies // Bulletin of Kiev University. Ser. Physics & Mathematics. – 2002. – № 1. – P. 112–118.

  18. Seifert A., Greenblatt D., Wygnanski I.J. Active separation control: an overview of Reynolds and Mach numbers effects // Aerosp. Sci. Technol. – 2004. – 8. – P. 569–582. doi: 10.1016/j.ast.2004.06.007

  19. Goldschmied F.R. Integrated hull design, boundary layer control and propulsion of submerged bodies: Wind tunnel verification // Proc. AIAA/SAE/ASME 18th Joint Propulsion Conf., 1982. – P. 3–18.

  20. Choi K.-S., Jukes T. N., Whalley R. Turbulent boundary-layer control with plasma actuators // Phil. Trans. Royal Soc. – 2011. – 369. – P. 1443–1458. doi: 10.1098/rsta.2010.0362

  21. Landau L. D., Lifshits E. M. Fluid Mechanics. – 2nd ed. – Butterworth-Heinemann, 1987. – Vol. 6. Course of Theoretical Physics. – 552 p.

  22. Нестерук І.Г. Особливості турбулізації та відриву примежового шару на тонких осесиметричних дозвукових тiлах // Наукові вісті НТУУ “КПІ”. – 2002. – № 3. – С. 70–76.

  23. Buraga O.A., Nesteruk I., Savchenko Yu.N. Comparison of slender axisymmetric body drag under unseparated and supercavitational flow regimes // Int. J. Fluid Mech. Res. – 2006. – 33, № 3. – P. 255–264. doi: 10.1615/InterJFluidMechRes.v33.i3.40

  24. Нестерук І.Г. Часткова кавітація на видовжених тілах // Прикладна гідромеханіка. – 2004. – 6 (78), № 3. – С. 64–75.

  25. Lorant M. Investigation into high-speed of underwater craft // Nautical Magazine. – 1968. – 200, № 5. – P. 273–276.

  26. Sprott J.C. Energetics of walking and running. – http://sprott.physics.wisc.edu/technote/walkrun.htm

  27. http://www.speedofanimals.com/animals/bottlenose_dolphin

  28. https://en.wikipedia.org/wiki/Automobile_drag_coefficient

  29. https://en.wikipedia.org/wiki/Eco-Runner_Team_Delft

  30. https://en.wikipedia.org/wiki/Aptera_2_Series

  31. https://en.wikipedia.org/wiki/Formula_One_car

  32. https://en.wikipedia.org/wiki/Antonov_An-225_Mriya

  33. https://en.wikipedia.org/wiki/Lift-to-drag_ratio

  34. https://en.wikipedia.org/wiki/Solar_Impulse

  35. https://en.wikipedia.org/wiki/Underwater_glider

  36. https://en.wikipedia.org/wiki/Hybrid_Air_Vehicles_HAV_304_Airlander_10

  37. https://www.sciencedaily.com/releases/2009/05/090507194511.htm

  38. http://animals.nationalgeographic.com/animals/birds/albatross/

  39. https://en.wikipedia.org/wiki/Albatross

  40. Templin R.J., Chatterjee S. Posture, locomotion, and paleoecology of pterosaurs.  Boulder, Colorado: Geological Society of America.  2004.  P. 56–60.

  41. https://en.wikipedia.org/wiki/VA-111_Shkval

  42. https://en.wikipedia.org/wiki/Spearfish_torpedo

  43. http://www.wow.com/wiki/Mark_48_torpedo

DOI: https://doi.org/10.20535/1810-0546.2016.6.81605


  • There are currently no refbacks.

Copyright (c) 2017 NTUU KPI