Mathematical Modeling of Static Imaging Fourier Transform Spectrometer for Remote Sensing

Валентин Георгійович Колобродов, Дмитро Вікторович Поздняков

Abstract


Background. Imaging Fourier transform spectrometer (IFTS) is a perspective system for getting information of the Earth's surface within hundreds of spectral bands. However, the development of such system causes many difficulties because of the large number of parameters that must be taken into account.

Objective. To consider the main stages of work of the IFTS and to propose a sequence of calculating the basic parameters of the device

Methods. A work of the static IFTS is divided into four stages. Instrument design and calculation are suggested to carry out these stages.

Results. As a result of mathematical modeling, the proposed sequence of designing the static IFS is based on the Sanyak interferometer. The basic four stages of work are as follows: creating an image in the entrance slit plane by input optics, forming an interference pattern on the detector, creating a signal by the detector, signal processing and recovering of spectral characteristics. Such division into stages allows investigating separately the impact of each stage on the device characteristics entirely.

Conclusions. The proposed sequence allows defining the main parameters and characteristics of the static IFTS based on Sanyak interferometer, such as the input focal length of the lens, its field of view, bandwidth, spectral range and the number of spectral channels, parameters of matrix detector, which are essential on the design phase. Also, due to this, the creation and optimization of the IFS basic model are accelerated and simplified.


Keywords


Imaging Fourier transform spectrometers; Mathematical modeling; Remote sensing

References


Y. Ferrec, “Spectro-imagerie aéroportée par transformation de Fourier avec un interféromètre statique à décalage latéral: réalisation et mise en oeuvre”, M.S. these, University Paris-Sud XI, 2008. Avaliable: http://pastel.archivesouvertes.fr/ docs/00/35/71/22/PDF/these_Ferrec.pdf

L.J. Otten III et al., “Design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft envi­ronmental remote sensing”, Proc. SPIE, vol. 2480, Imaging Spectrometry, pp. 418–424, 1995. doi: 10117/12.210904

S.T. Crites et al., “A low cost thermal infrared hyperspectral imager for small satellites”, Proc. SPIE, vol. 8044, Sensors and Systems for Space Applications, pp. 838509–10, 2011. doi: 10117/12.886535

Tingkui Mu et al., “Analysis of a moderate resolution Fourier transform imaging spectrometer”, Optics Communication, vol. 282, no. 9, pp. 1699–1705, 2009. doi: 10.1016/j.optcom.2009.01.022

Yan Yuan et al., “Modeling of the temporally and spatially modulates Fourier transform imaging spectrometer working in orbit”, Optik, vol. 122, no. 17, pp. 1576–1583, 2011. doi: 10.1016/j.ijleo.2010.10.006

V.G. Kolobrodov et al., “Optical systems of Fourier transform imaging spectrometer for remote sensing”, Kosmichna Nauka i Tekhnika, vol. 20, no. 5, pp. 35–40, 2014 (in Ukrainian).

F. Alain. Simulation of Imaging Fourier Transform Spectrometers Using DIRSIG [Online]. Avaliable: http://www.dirsig.org/ docs/alain.pdf

V.I. Kurenkov et al., Methods of Selecting the Basic Design Characteristics and Constructive Image of Spacecraft Observations. Samara, Russia: Samara State University Publ., 2007 (in Russian).

V.G. Kolobrodov et al., The Diffraction Theory of Optical Systems. Kyiv, Ukraine: NTUU KPI, 2011 (in Ukrainian).

N.K. Artyukhina et al., “A mathematical model of the functioning of the Fourier transform spectrometer”, Visnyk NTUU KPI. Ser. Pryladobuduvannya, no. 43, pp. 35–46, 2012. (in Russian).

N.K. Artyukhina et al., “Mathematical modeling of the Fourier transform spectrometer”, Pribory i Metody Izmerenij, no. 1 (4), pp. 24–29, 2012 (in Russian).

V.G. Kolobrodov et al., “The problems of designing coherent spectrum analyzers”, Proc. SPIE, vol. 9066, pp. 1–7, 2013. doi: 10.1117/12.2049587

V.G. Kolobrodov et al., “The diffraction limit of an optical spectrum analyzer”, Proc. SPIE, vol. 9809, pp. 1–7, 2015. doi: 10.1117/12.2228534


GOST Style Citations


  1. Ferrec Y. Spectro-imagerie aéroportée par transformation de Fourier avec un interféromètre statique à décalage latéral: réalisation et mise en oeuvre: These pour obtenir le grade de Docteur en Sciences. – Université Paris-Sud XI, 2008. – URL: http://pastel.archivesouvertes.fr/docs/00/35/71/22/PDF/these_Ferrec.pdf
     
  2. Design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environmental remote sensing / L.J. Otten III, E.W. Butler, B. Rafert, G. Sellar // Proc. SPIE. –1995. – 2480, Imaging Spectrometry. – P. 418–424.
     
  3. A low cost thermal infrared hyperspectral imager for small satellites / S.T. Crites, P.G. Lucey, R. Wright et al. // Proc. SPIE. –2011. – 8044, Sensors and Systems for Space Applications. – P. 1–11.
     
  4. Tingkui Mu, Chunmin Zhang, Daochang Zhao. Analysis of a moderate resolution Fourier transform imaging spectrometer // Optics Communication. – 2009. – 282, № 9. – P. 1699–1705.
     
  5. Modeling of the temporally and spatially modulated Fourier transform imaging spectrometer working in orbit / Yan Yuan, Xiubao Zhang, Chengming Sun, Zhiliang Zhou. – Optik. – 2011. – 122, № 17. – P. 1576–1583.
     
  6. Оптичні системи зображуючих Фур’є-спектрометрів дистанційного зондування Землі / В.Г. Колобродов, М.І. Лихоліт, Д.В. Поздняков, В.М. Тягур // Космічна наука і техніка. – 2014. – 20, № 5. – С. 35–40.
     
  7. Alain F. Simulation of Imaging Fourier Transform Spectrometers Using DIRSIG [Online]. – URL: http://www.dirsig.org/ docs/alain.pdf.
     
  8. Куренков В.И., Салмин В.В., Прохоров А.Г. Методика выбора основных проектных характеристик и конструктивного облика космических аппаратов наблюдения: учебное пособие. –Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2007. – 160 с.
     
  9. Колобродов В.Г., Тимчик Г.С. Дифракційна теорія оптичних систем. – К.: НТУУ “КПІ”, 2011. – 140 с.
     
  10. Артюхина Н.К., Климович Т.В., Котов М.Н. Математическая модель функционирования Фурье-видеоспектрометра // Вісник НТУУ “КПІ”. Сер. Приладобудування. – 2012. – Вип. 43. – С. 35–46.
     
  11. Артюхина Н.К., Климович Т.В., Котов М.Н. Математическое моделирование Фурье-видеоспектрометра // Приборы и методы измерений. – 2012. – № 1 (4). – С. 24–29.
     
  12. Kolobrodov V.G., Tymchik G.S., Nquyen Q.A. The problems of designing coherent spectrum analyzers // Proc. SPIE. – 2013. – 9066. – P. 1–7.
     
  13. Kolobrodov V.G., Tymchik G.S., Kolobrodov M.S. The diffraction limit of an optical spectrum analyzer // Proc. SPIE. – 2015. – 9809. – P. 1–7.




DOI: https://doi.org/10.20535/1810-0546.2016.6.78026

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 NTUU KPI