Passive Methods of Coherent Vortical Structures Control in Vortex Chambers. Part 2. Dispersion Analysis of Efficiency

Володимир Миколайович Турик, Віктор Олександрович Кочін

Abstract


Background. Improvement of the working processes efficiency of power and technological machinery and installations of vortex type.

Objective. Statistical analysis of experimental test of the new methods of power-capacious coherent vortical structures control. Just their positive influence on processes of the transfer of mass, momentum and energy in swirling flows determines to a great extent the operating effectiveness of equipment.

Methods. Spectral valuations data of represented in the present article, part 1, methods of artificial vortical disturban­ces influence on power-capacious coherent formation were subjected to the more detailed numerical processing on digital foundation.

Results. Analysis of distributions of the composite swirling flow average actual velocities and the fluctuating movement intensity in characteristic area of the most power-capacious coherent vortical structure testifies to its definite stability and quasi-steady current. On the strength of this fact the detailed estimation of fluctuating movement energy balance according to determined characteristic frequency bands was carried out along the researching zone. The features of action of various eddy-generator types from the standpoint of control “stiffness” of the transfer processes were shown. Dispersion analysis confirmed the data of spectral processing of the information, put in part 1 of the article regarding to discovered phenomenon of “reverse decay of the vortices”, that is the most typical for two-dimen­sional eddy-generator (EG № 1).

Conclusions. Developed methods and their possible modifications offer the prospect of efficacious low-expended control on micro-level by hydromechanical, thermal and chemical processes in the cylinders of internal combustion    engines, in vortex burners, combustion chambers of rocket engines, furnaces, plasmatrons, in mixers, chemical reactors, nuc­­­lear powerplants etc.


Keywords


Coherent vortical structures; Control; Vortex chamber; Probability density distribution; Vortices mutual suscep-tibility; Dispersion; Velocity fluctuations energy

References


V.M. Turick and V.O. Kochin, “Passive methods of coherent vortical structures control in vortex chambers. Part 1. Spectral evaluation of efficiency”, Naukovi Visti NTUU KPI, no. 6, pp. 54–65, 2015 (in Ukrainian).

V.N. Turick, “Coherent vortical structures in bounded swirling flows”, Visnyk Cherkas'koho Derzhavnoho Tekhnolohichnoho Universytetu, no. 2, pp. 58–67, 2004 (in Russian).

L.F. Kozlov et al., Turbulence Formation in Shear Layers. Kyiv, Ukraine: Naukova Dumka, 1985 (in Russian).

V.V. Babenko et al., Boundary Layer on Elastic Plates. Kyiv, Ukraine: Naukova Dumka, 1993 (in Russian).

R.A. Makarenko and V.N. Turick, “Kinematics of flow in a dead end part of a vortex chamber”, Int. J. Fluid Mech. Res., vol. 31, no. 3, pp. 299–306, 2004.

V.V. Babenko and V.N. Turick, “Breadboard model of flow in the vortex chamber”, Prykladna Hidromekhanika, vol. 10 (82), no. 3, pp. 3–19, 2008 (in Russian).

V.A. Kochin and V.N. Turick, “Methodical features of the hot-wire experimental investigation of flow structure in vortex chamber”, Visnyk NTUU KPI. Ser. Mashynobuduvannya, no. 47, pp. 54–57, 2005 (in Russian).

J. Bendat and A. Piersol, Random Data. Moscow, USSR: Mir, 1989 (in Russian).

A.S. Monin and A.M. Yaglom, Statistical Hydromechanics, vol. 1. Moscow, USSR: Nauka, 1965 (in Russian).

V.I. Subbotin et al., Hydrodynamics and Heat Transfer in Nuclear Powerful Equipment (Foundation of Calculations). Moscow, USSR: Atomizdat, 1974 (in Russian).

U.T. Bödewadt, “Die Drehströmung über festem Grund”, Z. Angew. Math. Mech., no. 20, ss. 241–253, 1940.


GOST Style Citations


  1. Турик В.М., Кочін В.О. Пасивні методи керування когерентними вихровими структурами у вихрових камерах. Части-    на 1. Спектральні оцінки ефективності // Наукові вісті НТУУ “КПІ”. – 2015. – № 6. – С. 54–65.

  2. Турик В.Н. Когерентные вихревые структуры в ограниченных закрученных потоках // Вісник Черкаського держ. тех­нолог. ун-ту. – 2004. – № 2. – С. 58–67.

  3. Формирование турбулентности в сдвиговых течениях / Л.Ф. Козлов, А.И. Цыганюк, В.В. Бабенко и др. – К.: Наук. думка, 1985. – 284 с.

  4. Бабенко В.В., Канарский М.В., Коробов В.И. Пограничный слой на эластичных пластинах. – К.: Наук. думка, 1993. – 264 с.

  5. Makarenko R.A., Turick V.N. Kinematics of flow in a dead end part of a vortex chamber // Int. J. Fluid Mech. Res. – 2004. – 31, № 3. – P. 299–306.

  6. Бабенко В.В., Турик В.Н. Макет вихревых структур при течении потока в вихревой камере // Прикладна гідромеханіка. – 2008. – 10 (82), № 3. – С. 3–19.

  7. Кочин В.А., Турик В.Н. Особенности методики проведения термоанемометрического эксперимента при исследовании структуры течений в вихревой камере // Вісник НТУУ “КПІ”. Сер. Машинобудування. – 2005. – Вип. 47. – С. 54–57.

  8. Бендат Дж., Пирсол А. Прикладной анализ случайных данных / Пер. с англ. – М.: Мир, 1989. – 540 с.

  9. Монин А.С., Яглом А.М. Статистическая гидромеханика. Ч. 1. – М.: Наука, 1965. – 640 с.

  10. Гидродинамика и теплообмен в атомных энергетических установках (основы расчета) / В.И. Субботин, М.Х. Ибрагимов, П.А. Ушаков и др. – М.: Атомиздат, 1974. – 408 с.

  11. Bödewadt U.T. Die Drehströmung über festem Grund // Z. Angew. Math. Mech. – 1940. – 20. – S. 241–253.




DOI: https://doi.org/10.20535/1810-0546.2016.5.77463

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 NTUU KPI