Frequency Characteristics of Reflection and Refraction Coefficients of Bulk Spin Waves in Spin Lens with Non-Ideal Interphaces

Сергій Олександрович Решетняк, Сергій Васильович Ковальчук

Abstract


Background. This work is devoted to the application of geometrical optics formalism to describe the behavior of spin waves, which is propagating in a ferromagnetic medium with non-uniform distribution of magnetic parameters. Use of this approach allows to describe the process of refraction of spin waves to determine the focal length of spin lenses or mirrors and to operate it by changing the frequency of the spin wave with a given magnetic parameters of a medium.

Objective. The objective is to calculate the index of refraction, reflection coefficient and focal length of spin lens as function of frequency of spin waves, the external magnetic field and magnetic parameters of the medium.

Methods. In this paper, to find the refractive index and the focal length was used the geometrical optics approach. To describe the dynamics of the magnetization vector the formalism was used of the parameter of order of spin density that also gives an opportunity to use the methods of quantum mechanics to calculate the spin wave reflection coefficient.

Results. In the paper the refractive index and focal length of a bulk spin lens have been found. By considering the generalized boundary conditions the expression has been found for the reflection coefficient of spin lens. In addition, results of investigation says that strong dependence exists of transparency of spin lens on the frequency of spin waves that is characterized by corresponding magnetic parameters of structure.

Conclusions. It is shown the possibility to change “optical” spin lens parameters in a wide range of values by changing only the frequency of spin waves and keeping constant the values of the external magnetic field and magnetic structure parameters. In addition, the results of studies prove that exists a strong dependence of the spin lens transparency on the quality of its borders, which is characterized by appropriate parameters of interface.

Keywords


Spin lens; Ferromagnet; Anisotropy; Exchange interaction; Refraction

References


M. Born and E. Wolf, Principles of Optics. Moscow, USSR: Nauka, 1973 (in Russian).

Yu.A. Kravtsov and Yu.I. Orlov, Geometrical Optics in Inhomogeneous Media. Moscow, USSR: Nauka, 1980 (in Russian).

Yu.I. Gorobets and S.A. Reshetnyak, “Reflection and refraction of spin waves in uniaxial magnets in the geometrical-optics approximation”, Tech. Phys., vol. 43, no. 2, pp. 188–193, 1998.

S.A. Reshetnyak, “Refraction of surface spin waves in spatially inhomogeneous ferrodielectrics with biaxial magnetic anisotropy”, Fizika Tverdogo Tela, vol. 46, no. 6, pp. 1061–1067, 2004 (in Russian).

S.A. Reshetnyak and V.Yu. Gorobets, “Refaction of bulk spin-waves on a boundary of two homogeneous easy-axis antiferromagnetic media”, J. Magn. Magn. Mater., vol. 290, pp. 1025–1028, 2005.

S. Reshetnyak and A. Berezhinsky, “Reflection and refraction of bulk exchange spin wave on the interface of two ferromagnetic media in planar magnetic field”, GJSFR., vol. 12, no. 3, pp. 61–64, 2012.

S. Choi and S.-K. Kim. Total reflection and negative refraction of dipole-exchange spin waves at magnetic interfaces: micromagnetic modeling study [Online]. Available: http://arxiv.org/ftp/arxiv/papers/0708/0708.1642.pdf

D.-E. Jeong et al., “Refractive index and Snell's law for dipole-exchange spin waves in restricted geometry”, SPIN, vol. 01, no. 1, pp. 27–31, 2011.

D.-E. Jeong et al. Refractive index and Snell law for dipolar-exchange spin waves in a confined planar structure [Online]. Available: http://arxiv.org/vc/arxiv/papers/0901/0901.1700v1.pdf

P. Gruszecki et al., “Influence of magnetic surface anisotropy on spin wave reflection from the edge of ferromagnetic film”, Phys. Rev. B, vol. 92, no. 5, pp. 054427, 2015.

H. Hata et al., “Micromagnetic simulation of spin wave propagation in a ferromagnetic film with different thicknesses”, J. Magn. Soc. Jpn., vol. 39, no. 4, pp. 151–155, 2015.

V.G. Bar’yakhtar and Yu.I. Gorobets, Bubble Domains and their Lattices. Kyiv, Ukraine: Naukova Dumka, p. 167, 1988 (in Russian).

G.T. Rado and J. R. Weertman, “Spin-wave resonance in a ferromagnetic metal”, J. Phys. Chem. Solids, vol. 11, pp. 315–319, 1959.

F. Hoffmann et al., “Evidence for an exchange coupling at the interface between two ferromagnetic films”, J. Appl. Phys., vol. 41, no. 3, pp. 1022–1023, 1970.

F. Hoffmann, “Dynamic pinning induced by nickel layers on permalloy films”, Phys. Status Solidi, 1970, vol. 41, pp. 807–813.

V.V. Kruglyak et al., “Spin-wave spectrum of an ideal multilayer magnet upon modulation of all parameters of the Landau–Lifshitz equation”, Fizika Tverdogo Tela, vol. 46, no. 5, pp. 842–845, 2005 (in Russian).

H.T. Nguyen et al., “M G 2007 Dipoleexchange spin waves in ferromagnetic stripes with inhomogeneous magnetization”, Phys. Rev. B, vol. 76, no. 13, pp. 4413–4422, 2007.

Fähnle et al., “Role of the sample boundaries in the problem of dissipative magnetization dynamics”, J. Magn. Magn. Mater., vol. 360, pp. 126–130, 2014.

P. Grünberg et al., “Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers”, Phys. Rev. Lett., vol. 57, no. 19, pp. 2442–2445, 1986.

B. Heinrich et al., “Structural and magnetic properties of ultrathin Ni/Fe bilayers grown epitaxially on Ag(0 0 1)”, Phys. Rev. B, vol. 38, pp. 12879–12899, 1988.

M. Vohl et al., “Effect of interlayer exchange coupling on spin-wave spectra in magnetic”, J. Phys.: Condens. Matter., vol. 39, no. 16, pp. 12003–12012, 1989.

J. Barnaś and P. Grünberg “Spin waves in exchangecoupled epitaxial double-layers”, J. Magn. Magn. Mater, vol. 82, pp. 186–198, 1990.

B. Heinrich et al., “Ferromagnetic and antiferromagnetic exchange coupling in bcc epitaxial ultrathin Fe(0 0 1)/Cu(0 0 1)Fe(0 0 1) trilayers”, Phys. Rev. Lett., vol. 64, no. 6, pp. 673–676, 1990.

M. Všianská and M. Šob, “Magnetically dead layers at sp-impurity-decorated grain boundaries and surfaces in nickel”, Phys. Phys. B, vol. 84, no. 1, pp. 4418–4423, 2011.

V.A. Ignatchenko, “Boundary-conditions for magnetic and magnetoelastic systems”, Fizika Metallov i Metallovedenie, vol. 36, pp. 1219–1228, 1973 (in Russian).

J. Barnaś, “On the Hoffmann boundary conditions at the interface between two ferromagnets”, J. Magn. Magn. Mater., vol. 102, no. 3, pp. 319–322, 1991.

J.F. Cochran and B. Heinrich, “Boundary conditions for exchange-coupled magnetic slabs”, Phys. Rev. B, vol. 45, no. 22, pp. 13096–13099, 1992.

D.L. Mills, “Spin waves in ultrathin exchange-coupled ferromagnetic multilayers: the boundary conditions at the interface”, Phys. Rev. B, vol. 45, no. 22, pp. 13100–13104, 1992.

K.Y. Guslienko et al., “Effective dipolar boundary conditions for dynamic magnetization in thin magnetic stripes”, Phys. Rev. B, vol. 66, no. 13, pp. 2402–2406, 2002.

K. Y. Guslienko and A.N. Slavin, “Boundary conditions for magnetization in magnetic nanoelements”, Phys. Rev. B, vol. 72, no. 1, pp. 4463–4468, 2005.

V.V. Kruglyak et al., “Magnetization boundary conditions at a ferromagnetic interface of finite thickness”, J. Phys.: Condens. Matter., vol. 26, no. 40, pp. 6001–6007, 2014.


GOST Style Citations


  1. Борн М., Вольф Э. Основы оптики. – М.: Наука, 1973. – 619 с.

  2. Кравцов Ю.А., Орлов Ю.И. Геометрическая оптика в неоднородных средах. – М.: Наука, 1980. – 304 с.

  3. Gorobets Yu.I, Reshetnyak S.A. Reflection and refraction of spin waves in uniaxial magnets in the geometrical-optics approximation // Technical Physics. – 1998. – 43, № 2. – P. 188–193.

  4. Решетняк С.А. Преломление поверхностных спиновых волн в пространственно неоднородных ферродиэлектриках с двуосной магнитной анизотропией // Физика твердого тела. – 2004. – 46, № 6. – С. 1061–1067.

  5. Reshetnyak S. A., Gorobets V.Yu. Refaction of bulk spin-waves on a boundary of two homogeneous easy-axis antiferromagnetic media // J. Magn. Magn. Mater. – 2005. – 290. – P. 1025–1028.

  6. Reshetnyak S., Berezhinsky A. Reflection and refraction of bulk exchange spin wave on the interface of two ferromagnetic media in planar magnetic field // Global J. Sci. Frontier Res. – 2012. – 12, № 3. ­– P. 61–64.

  7. Choi S., Kim S.-K. Total reflection and negative refraction of dipole-exchange spin waves at magnetic interfaces: micro­mag­netic modeling study [Online]. – Available:  http://arxiv.org/ftp/arxiv/papers/0708/0708.1642.pdf

  8. Jeong D.-E., Han D.-S., Kim S.-K. Refractive index and Snell's law for dipole-exchange spin waves in restricted geometry // SPIN. – 2011. – 01, № 1. – P. 27–31.

  9. Refractive index and Snell law for dipolar-exchange spin waves in a confined planar structure / D.-E. Jeong, D.-S. Han, S. Choi et al. [Online]. – Available:  http://arxiv.org/vc/arxiv/papers/0901/0901.1700v1.pdf

  10. Influence of magnetic surface anisotropy on spin wave reflection from the edge of ferromagnetic film / P. Gruszecki, Yu.S. Dadoenkova, N.N. Dadoenkova et al. // Phys. Rev. B. – 2015. – 92, № 5. – P. 054427.

  11. Micromagnetic simulation of spin wave propagation in a ferromagnetic film with different thicknesses / H. Hata, T. Mori­yama,   K. Tanabe et al. // J. Magn. Soc. Jpn. – 2015. – 39, № 4. – P. 151–155.

  12. Барьяхтар В.Г., Горобец Ю.И. Цилиндрические магнитные домены и их решетки. – К.: Наук. думка. – 1988. – С. 167.

  13. Rado G.T., Weertman J.R. Spin-wave resonance in a ferromagnetic metal // J. Phys. Chem. Solids. – 1959. – 11. – P. 315–333.

  14. Hoffmann F., Stankoff A., Pascard H. Evidence for an exchange coupling at the interface between two ferromagnetic films // J. Appl. Phys. – 1970. – 41, № 3. – P. 1022–1023.

  15. Hoffmann F. Dynamic pinning induced by nickel layers on permalloy films // Phys. Status Solidi. – 1970. – 41. – P. 807–813.

  16. Кругляк В.В., Кучко А.Н., Финохин В.И. Спин-волновой спектр идеального многослойного магнита при модуляции всех параметров уравнения Ландау–Лифшица // Физика твердого тела. – 2004. – 46, № 5. – P. 842–845.

  17. Nguyen H.T., Nguyen T.M., Cottam M.G. Dipole exchange spin waves in ferromagnetic stripes with inhomogeneous magnetization // Phys. Rev. B. – 2007. – 76, № 13. – P. 4413–4422.

  18. Fähnle M., Slavin A., Hertel R. Role of the sample boundaries in the problem of dissipative magnetization dynamics // J. Magn. Magn. Mater. – 2014. – 360. – P. 126–130.

  19. Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers / P. Grünberg, R. Schreiber, Y. Pang et al. // Phys. Rev. Lett. – 1986. – 57, № 19. – P. 2442–2445.

  20. Structural and magnetic properties of ultrathin Ni/Fe bilayers grown epitaxially on Ag(0 0 1) / B. Heinrich, S.T. Purcell, J.R. Dutcher et al. // Phys. Rev. B. – 1988. – 38. – P. 12879–12899.

  21. Vohl M., Barnaś J., Grünberg P. Effect of interlayer exchange coupling on spin-wave spectra in magnetic double layers: Theory and experiment // J. Phys.: Condens. Matter. – 1989. – 39, № 16. – P. 12003–12012.

  22. Barnaś J., Grünberg P. Spin waves in exchangecoupled epitaxial double-layers // J. Magn. Magn. Mater. – 1990. – 82. – P. 186–198.

  23. Ferromagnetic and antiferromagnetic exchange coupling in bcc epitaxial ultrathin Fe(0 0 1)/Cu(0 0 1)Fe(0 0 1) trilayers / B. Heinrich, Z. Celinski, J.F. Cochran et al. // Phys. Rev. Lett. – 1990. – 64, № 6. – P. 673–676.

  24. V šianská M., Šob M. Magnetically dead layers at sp-impurity-decorated grain boundaries and surfaces in nickel // Phys. Phys. B. – 2011. – 84, № 1. – P. 4418–4423.

  25. Ignatchenko V.A. [Boundary conditions for magnetic and magnetoelastic systems] // Физика металлов и металловедение. – 1973. – 36. – P. 1219–1228 (in Russian).

  26. Barnaś J. On the Hoffmann boundary conditions at the interface between two ferromagnets // J. Magn. Magn. Mater. – 1991. – 102, № 3. – P. 319–322.

  27. Cochran J.F., Heinrich B. Boundary conditions for exchange-coupled magnetic slabs // Phys. Rev. B. – 1992. – 45, № 22. –    P. 13096–13099.

  28. Mills D.L. Spin waves in ultrathin exchange-coupled ferromagnetic multilayers: the boundary conditions at the interface // Phys. Rev. B. – 1992. – 45, № 22. – P. 13100–13104.

  29. Effective dipolar boundary conditions for dynamic magnetization in thin magnetic stripes / K.Y. Guslienko, S.O. Demokritov, B. Hillebrands et al. // Phys. Rev. B. – 2002. – 66, № 13. – P. 2402–2406.

  30. Guslienko K.Y., Slavin A.N. Boundary conditions for magnetization in magnetic nanoelements // Phys. Rev. B. – 2005. – 72,  № 1. – P. 4463–4468.

  31. Magnetization boundary conditions at a ferromagnetic interface of finite thickness / V.V. Kruglyak, O.Yu. Gorobets, Yu. I. Goro­bets et al. // J. Phys.: Condens. Matter. – 2014. – 26, № 40. – P. 6001–6007.




DOI: https://doi.org/10.20535/1810-0546.2016.4.74334

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 NTUU KPI