Mathematical Modeling of Isotermal Plug Flow Reactor with Consecutive Reaction Taking into Account the Catalyst Deactivation

Ігор Дмитрович Лучейко

Abstract


Background. Mathematical modeling of continuous chemical-technological processes in non-stationary conditions of their implementation is an urgent problem. Solving specific problem numerically on a computer can only provide a formal adequacy of the model to the original. Consequently, the analytical solutions have undeniable advantages over numerical solutions. In the case of heterogeneous catalysis, deactivation of solid catalyst (Kt) takes place with a reduction of the process selectivity, which leads to economic losses. Therefore, the rational (the maximum-beneficial) catalyst lifetime \]{\theta _{\max }} >  > 1\] is the essential part of the problem of industrial Kt selection. 

Objective. The aim of this study is an analytic solution of the problem of operating mode description of the isothermal system  “PFR \[({\tau _L})\] + reaction \[{{\rm A}_1}\xrightarrow[{{\text{Kt}}{\text{,}}\,\,{k_{{\text{d1}}}}}]{{{k_{01}},\,\,{n_1} = 1}}{\alpha _2}{{\rm A}_2}\xrightarrow[{{\text{Kt}}{\text{,}}\,\,{k_{{\text{d2}}}}}]{{{k_{02}},\,\,{n_2} = 1}}{\alpha _3}{{\rm A}_3}\] + Kt \[({k_{{\text{d}}(i)}})\]” under influence of destabilizing factor of deactivation Kt and calculation of rational time \[{\theta _{\max }} = {\tau _{\max }}/{\tau _L}\] its exploitation.

Methods. The modified mathematical model for the calculation of influence deactivation of Kt on the system operation mode is used. Distinctive features of the model are: reactor has a variable length at a constant flow rate and has equal initial and boundary conditions. 

Results. The relative deviations \[|{\varepsilon _{\eta 2}}|\, \sim {k_{{\text{d1}}}}\tau < < 1\] of yield of product \[{\rm A}_2\] and \[{\varepsilon _{s2}} \sim {k_{{\text{d1}}}}\tau\] of the selectivity for conditions of the deactivation of industrial Kt in the linear approximation analytically are calculated. It was found that the magnitudes of \[{\varepsilon _{\eta 2}}\] and \[{\varepsilon _{s2}}\] are determined by the relation \[{\gamma _{\text{d}}}/{\gamma _{0k}}\] of the simplex \[{\gamma _{\text{d}}} = {k_{{\text{d}}2}}/{k_{{\text{d}}1}}\] of rate constants of Kt deactivation and of the simplex \[{\gamma _{0k}} = {k_{01}}/{k_{02}}\] of stages rate constants.

Conclusions. It is proved that with respect to the yield of \[{\rm A}_2\] the self-regulation effect \[({\varepsilon _{\eta 2}} = 0)\] of mode takes place. Nomogram for determining of \[1 < < {\theta _{\max }} < < {({k_{{\text{d1}}}}{\tau _L})^{ - 1}}\] by the maximum-admissible value of \[\varepsilon _{s2\,\max }^{{\text{adm}}} < < 1\] is calculated. For example, at the degree of the conversion \[{x_0} = 75\%\] of reagent \[{\rm A}_1\] and \[\varepsilon _{s2\,\max }^{{\text{adm}}} = 1\% ,\,\,{\gamma _{\text{d}}}/{\gamma _{0k}} = 1\,\,\, \Rightarrow\] \[{\theta _{\max }} \approx 1,2 \cdot {10^3}\,\,({k_{{\text{d1}}}}{\tau _L} = {10^{ - 5}})\]. The rational time \[{\theta _{\max }}\] of exploitation of Kt increases (approximately directly proportional) with a decrease of the simplexes relation \[{\gamma _{\text{d}}}/{\gamma _{0k}}\].


Keywords


Mathematical modeling; Plug flow reactor; Consecutive irreversible reaction; Deactivation of solid catalyst; Catalyst lifetime

References


H. Kramers and K. Westerterp, Chemical Reactors. Calculation and Control. Moscow, Russia: Khimiya, 1967 (in Russian).

R. Aris, Process Analysis in Chemical Reactors. Leningrad, USSR: Khimiya, 1967 (in Russian).

A.G. Bondar, Mathematical Modeling in Chemical Technology. Kyiv, Ukraine: Vyscha Shkola, 1973 (in Russian).

A.Yu. Zakgeym, Introduction to Modeling of Chemical-Technological Processes. Moscow, Russia: Khimiya, 1982 (in Russian).

Yu.M. Zhorov, Kinetics of Industrial Organic Reactions. Moscow, Russia: Khimiya, 1982 (in Russian).

M.G. Slin’ko, “History of the development of mathematical modeling of catalytic processes and reactors”, Teoreticheskie Osnovy Himicheskoj Tehnologii, vol. 41, no. 1, pp. 13–29, 2007 (in Russian).

V.A. Makhlin, “Development and analysis of heterogeneous catalytic processes and reactors”, Teoreticheskie Osnovy Himicheskoj Tehnologii, vol. 43, no. 3, pp. 245–259, 2009 (in Russian).

D.V. Evdokimov et al., “Analysis of tendencies of development of modern mathematical and numerical modelling”, Visnyk DNU, Ser. Modeliuvannia, no. 8, pp. 3–17, 2009 (in Russian).

I.D. Lucheyko, “Deactivation of catalyst in system “reaction + plug flow reactor”, Naukovi Zapysky TNPU im. V. Hnatiuka. Ser. Khimiia, no. 14, pp. 58–65, 2008 (in Ukrainian).

I.D. Lucheyko, “Perturbations of initial reagent concentration in plug flow reactor (consecutive reaction", Naukovi Zapysky TNPU im. V. Hnatiuka. Ser. Khimiia, no. 16, pp. 47–52, 2009 (in Ukrainian).

I.D. Lucheyko, “Analysis of amplitude-frequency characteristics of system “perfect-mixing continuous reactor + consecutive reaction in Proc. XIX Mendeleev Congress on General and Applied Chemistry, vol. 1, Volgograd, Russia, 2011.

I.D. Lucheyko, “Deactivation of catalyst in system “consecutive reaction + catalyst + mixing continious reactor”, Naukovi Visti NTUU KPI, no. 6, pp. 145–151, 2012 (in Ukrainian).

I.D. Lucheyko, “The effects of local maximums for AFC of “CSTR + reaction at harmonic perturbations of speed of stream, in Proc. XV Int. Sci. Conf. High-Tech in Chemical Engineering2014, Zvenigorod, Russia, 2014.

I.D. Lucheyko, “Mathematical modeling of system “continuous stirred tank reactor + reaction in deactivation conditions of catalyst”, Izvestija Vuzov. Himija i Himicheskaja Tehnologija, vol. 57, no. 12, pp. 88–92, 2014 (in Russian).

I.D. Lucheyko, “Analogy between mathematical models of continuous stirred tank reactor, of measuring transducer and correcting device in non-stationary modes. Role Damkohler criterion”, in Proc. IV Int. Conf. on Chemistry and Chem. Technol., Erevan, Armenia, 2015 (in Russian).


GOST Style Citations


  1. Крамерс Х., Вестертерп К. Химические ректоры. Расчет и управление ими / Пер. с англ. – М.: Химия, 1967. – 264 c.
     
  2. Арис Р. Анализ процессов в химических реакторах / Пер. с англ. – Л.: Химия, 1967. – 328 с.
     
  3. Бондарь А.Г. Математическое моделирование в химической технологии. – К.: Вища школа, 1973. – 280 с.
     
  4. Закгейм А.Ю. Введение в моделирование химико-технологических процессов. – М.: Химия, 1982. – 288 с.
     
  5. Жоров Ю.М. Кинетика промышленных органических реакций. – М.: Химия, 1989. – 384 с.
     
  6. Слинько М.Г. История развития математического моделирования каталитических процессов и реакторов // Теорет. основы хим. технологии. – 2007. – 41, № 1. – С. 16–34.
     
  7. Махлин В.А. Разработка и анализ гетерогенно-каталитических процессов и реакторов // Теорет. основы хим. технологии. – 2009. – 43, № 3. – С. 261–275.
     
  8. Евдокимов Д.В., Кочубей А.А., Поляков Н.В. Анализ тенденций развития современного математического и численного моделирования // Вісник ДНУ. Сер. Моделювання. – 2009. – № 8. – С. 3–17.
     
  9. Лучейко І.Д. Дезактивація каталізатора в системі “реакція  + реактор ідеального витиснення” // Наук. зап. ТНПУ ім. В. Гнатюка. Сер. Хімія. – 2008. – № 14. – C. 58–65.
     
  10. Лучейко І.Д. Збурення початкової концентрації реагенту в реакторі ідеального витиснення (послідовна реакція ) // Наук. зап. ТНПУ ім. В. Гнатюка. Сер. Хімія. – 2009. – № 16. – С. 47–52.
     
  11. Lucheyko I.D. Analysis of amplitude-frequency characteristics of system “perfect-mixing continuous reactor + consecutive reaction  // XIX Mendeleev Congress on General and Applied Chemistry. Vol. 1: Abstracts. – Volgograd, 2011. – P. 532.
     
  12. Лучейко І.Д. Дезактивація каталізатора в системі “послідовна реакція  + каталізатор + проточний реактор змішування” // Наукові вісті НТУУ “КПІ”. – 2012. – № 6. – С. 145–151.
     
  13. Lucheyko I.D. The effects of local maximums for AFC of “CSTR + reaction ” at harmonic perturbations of speed of stream // XV Int. Sci. Conf. “High-Tech in Chemical Engineering–2014”: Abstracts. – Zvenigorod, 2014. – P. 49.
     
  14. Лучейко И.Д. Математическое моделирование системы “проточный реактор смешения + реакция  в условиях дезактивации катализатора // Изв. вузов. Химия и хим. технология. – 2014. – 57, вып. 12. – С. 88–92.
     
  15. Лучейко И.Д. Аналогия между математическими моделями проточного реактора смешения, измерительного преобразователя и корректирующего устройства в нестационарных режимах. Роль критерия Дамкёлера  // Сб. матер. IV Междунар. конф. по химии и хим. технологии. – Ереван, 2015. – С. 242–245. 




DOI: http://dx.doi.org/10.20535/1810-0546.2016.5.71920

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 NTUU KPI