Correlation Between Thermodynamic Characteristics of Glass-Forming Substances

Ярослав Олегович Шабловський, Валентин Володимирович Киселевич

Abstract


Background. Thermodynamics of the glass transition of the bulk samples of glass-forming substances.

Objective. The aim of the paper is analytical description of the correlations between thermodynamic characteristics of substance in the glass transition point and prediction of thermodynamic properties of organic and polymeric glass-forming substances.

Methods. Thermodynamic analysis of the glass transition in view of the formal consideration of the melt in the glass transition as the second-order phase transition.

Results. The applicability ranges of Ehrenfest-type relations for description of the correlation between thermodynamic cha­­racteristics of substance in the glass transition point are determined. The increments of the isobaric heat capacity and the thermal expansion coefficient at the glass transition point, as well as the pressure coefficient of the glass transition tem­pe­­rapture are predicted with the “entropic” correlation ratio for a number of organic and polymeric glass-forming substances.

Conclusions. “Entropic” correlation ratio is obtained and successfully tested. “Volumetric” correlation ratio is inapplicable to glass transition process.

Keywords


Glass transition; Thermodynamic properties of glasses; Second-order phase transition; Ehrenfest-type relations

References


R.O. Davies and G.O. Jones, “The irreversible approach to equilibrium in glasses”, Proc. R. Soc. A, vol. 217, no. 1128, pp. 26–42, 1953.

M. Goldstein, “Viscous liquids and the glass transition. IV. Thermodynamic equations and the transition”, J. Phys. Chem., vol. 77, no. 5, pp. 667–673, 1973.

C.M. Roland et al., “Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure”, Rep. Prog. Phys., vol. 68, no. 6, pp. 1405–1478, 2005.

D.W. van Krevelen and K. te Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions. Amsterdam, Netherlands: Elsevier, 2009, 1030 p.

Lange's Handbook of Chemistry, J.G. Speight, Ed. New York: Mcgraw-Hill, 2005, 1623 p.

J.M. O'reilly, “The effect of pressure on glass temperature and dielectric relaxation time of polyvinyl acetate”, J. Polym. Sci., vol. 57, no. 165, pp. 429–444, 1962.

M.P. Eastwood et al., “Rotational relaxation in ortho-terphenyl: using atomistic simulations to bridge theory and experiment”, J. Phys. Chem. B, vol. 117, no. 42, pp. 12898–12907, 2013.

L.A. Wood, “Glass transition temperatures of copolymers”, J. Polym. Sci., vol. 28, no. 117, pp. 319–330, 1958.

M. Pyda et al., “Heat capacity of poly(vinyl methyl ether)”, J. Polym. Sci., Part B: Polym. Phys., vol. 43, no. 16, pp. 2141–2153, 2005.

B. Wunderlich, “Study of the change in specific heat of monomeric and polymeric glasses during the glass transition”, J. Phys. Chem., vol. 64, no. 8, pp. 1052–1056, 1960.

N. Hirai and H. Eyring, “Bulk viscosity of polymeric systems”, J. Polym. Sci., vol. 37, no. 131, pp. 51–70, 1959.

U. Gaur et al., “Heat capacity and other thermodynamic properties of linear macromolecules. VI. Acrylic polymers”, J. Phys. Chem. Ref. Data, vol. 11, no. 4, pp. 1065–1089, 1982.

L. Delbreilh et al., “Study of poly(bisphenol A carbonate) relaxation kinetics at the glass transition temperature”, Eur. Polym. J., vol. 43, no. 1, pp. 249–254, 2007.

S.C. Sharma et al., “Relation between expansion coefficients and glass temperature”, J. Polym. Sci., Part B: Polym. Lett., vol. 10, no. 5, pp. 345–356, 1972.

E.-J. Donth, The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials. Berlin, Germany: Springer, 2001, 419 p.

H.B. Ke et al., “Excess heat capacity in glass-forming liquid systems containing molecules”, Sci. China: Phys., Mech. Astron., vol. 56, no. 6, pp. 1090–1095, 2013.

C. Alba-Simionesco et al., “Thermodynamic aspects of the glass transition phenomenon. II. Molecular liquids with variable interactions”, J. Chem. Phys., vol. 110, no. 11, pp. 5262–5272, 1999.

L. Finegold et al., “Glass/rubber transitions and heat capacities of binary sugar blends”, J. Chem. Soc., Faraday Trans. 1, vol. 85, no. 9, pp. 2945–2951, 1989.

A. Patkowski et al., “Dynamics of supercooled van der Waals liquid under pressure. A dynamic light scattering study”, Colloid Polym. Sci., vol. 282, no. 8, pp. 874–881, 2004.

K. Mpoukouvalas et al., “Effect of temperature and pressure on the dynamic miscibility of hydrogen-bonded polymer blends”, Macromolecules, vol. 38, no. 2, pp. 552–560, 2005.

S. Corezzi et al., “Relation between structural relaxation time and configurational entropy: A test of the Adam-Gibbs model on epoxy resins”, Philos. Mag. B, vol. 82, no. 3, pp. 339–346, 2002.

M. Paluch et al., “Scaling behavior of the α relaxation in fragile glass-forming liquids under conditions of high compression”, Phys. Rev. E, vol. 61, no. 1, pp. 526–531, 2000.

U. Gaur et al., “Heat capacity and other thermodynamic properties of linear macromolecules. VIII. Polyesters and polyami­des”, J. Phys. Chem. Ref. Data, vol. 12, no. 1, pp. 65–89, 1983.


GOST Style Citations


  1. Davies R.O., Jones G.O. The irreversible approach to equilibrium in glasses // Proc. R. Soc. A. – 1953. – 217, № 1128. –   P. 26–42.

  2. Goldstein M. Viscous liquids and the glass transition. IV. Thermodynamic equations and the transition // J. Phys. Chem. – 1973. – 77, № 5. – P. 667–673.

  3. Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure / C.M. Roland, S. Hensel-Bielowka, M. Paluch, R. Casalini // Rep. Prog. Phys. – 2005. – 68, № 6. – P. 1405–1478.

  4. Van Krevelen D.W., Te Nijenhuis K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. – 4th ed. – Amsterdam: Elsevier, 2009. – 1030 p.

  5. Lange's handbook of chemistry / J.G. Speight, Ed. – 16th ed. – New York: Mcgraw-Hill, 2005. – 1623 p.

  6. O'reilly J.M. The effect of pressure on glass temperature and dielectric relaxation time of polyvinyl acetate // J. Polym. Sci. – 1962. – 57, № 165. – P. 429–444.

  7. Rotational relaxation in ortho-terphenyl: using atomistic simulations to bridge theory and experiment / M.P. Eastwood, T. Chitra, J.M. Jumper et al. // J. Phys. Chem. B. – 2013. – 117, № 42. – P. 12898–12907.

  8. Wood L.A. Glass transition temperatures of copolymers // J. Polym. Sci. – 1958. – 28, № 117. – P. 319–330.

  9. Heat capacity of poly(vinyl methyl ether) / M. Pyda, K. Van Durme, B. Wunderlich, B. Van Mele // J. Polym. Sci., Part B: Polym. Phys. – 2005. – 43, № 16. – P. 2141–2153.

  10. Wunderlich B. Study of the change in specific heat of monomeric and polymeric glasses during the glass transition // J. Phys. Chem. – 1960. – 64, № 8. – P. 1052–1056.

  11. Hirai N., Eyring H. Bulk viscosity of polymeric systems // J. Polym. Sci. – 1959. – 37, № 131. – P. 51–70.

  12. Heat capacity and other thermodynamic properties of linear macromolecules. VI. Acrylic polymers / U. Gaur, S. Lau, B.B. Wun-derlich, B. Wunderlich // J. Phys. Chem. Ref. Data. – 1982. – 11, № 4. – P. 1065–1089.

  13. Study of poly(bisphenol A carbonate) relaxation kinetics at the glass transition temperature / L. Delbreilh, E. Dargent, J. Gre- net et al. // Eur. Polym. J. – 2007. – 43, № 1. – P. 249–254.

  14. Sharma S.C., Mandelkern L., Stehling F.C. Relation between expansion coefficients and glass temperature // J. Polym. Sci., Part B: Polym. Lett. – 1972. – 10, № 5. – P. 345–356.

  15. Donth E.-J. The glass transition: relaxation dynamics in liquids and disordered materials. – Berlin: Springer, 2001. – 419 p.

  16. Ke H.B., Wen P., Wang W.H. Excess heat capacity in glass-forming liquid systems containing molecules // Sci. China: Phys., Mech. Astron. – 2013. – 56, № 6. – P. 1090–1095.

  17. Alba-Simionesco C., Fan J., Angell C.A. Thermodynamic aspects of the glass transition phenomenon. II. Molecular liquids with variable interactions // J. Chem. Phys. – 1999. – 110, № 11. – P. 5262–5272.

  18. Finegold L., Franks F., Haltey R.H.M. Glass/rubber transitions and heat capacities of binary sugar blends // J. Chem. Soc., Faraday Trans. 1. – 1989. – 85, № 9. – P. 2945–2951.

  19. Patkowski A., Gapiński J., Meier G. Dynamics of supercooled van der Waals liquid under pressure. A dynamic light scattering study // Colloid Polym. Sci. – 2004. – 282, № 8. – P. 874–881.

  20. Effect of temperature and pressure on the dynamic miscibility of hydrogen-bonded polymer blends / K. Mpoukouvalas, G. Floudas, S.H. Zhang, J. Runt // Macromolecules. – 2005. – 38, № 2. – P. 552–560.

  21. Relation between structural relaxation time and configurational entropy: A test of the Adam-Gibbs model on epoxy resins / S. Corezzi, D. Fioretto, S.C. Santucci et al. // Philos. Mag. B. – 2002. – 82, № 3. – P. 339–346.

  22. Paluch M., Hensel-Bielówka S., Zioło J. Scaling behavior of the α relaxation in fragile glass-forming liquids under conditions of high compression // Phys. Rev. E. – 2000. – 61, № 1. – P. 526–531.

  23. Heat capacity and other thermodynamic properties of linear macromolecules. VIII. Polyesters and polyamides / U. Gaur, S. Lau, B.B. Wunderlich, B. Wunderlich // J. Phys. Chem. Ref. Data. – 1983. – 12, № 1. – P. 65–89.




DOI: https://doi.org/10.20535/1810-0546.2016.4.69207

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 NTUU KPI