Obtaining of Oxycellulose from Cotton Fibers by Action of Various Oxidants
DOI:
https://doi.org/10.20535/1810-0546.2016.3.65694Keywords:
Cotton fiber, Hydrogen peroxide, Oxone, PINO, Oxycellulose, Carboxyl groupAbstract
Background. Development of production technologies of materials for various purposes of alternatives to crude oil and natural gas sources of raw material, in particular cellulose.
Objective. To determine the optimal values of technological parameters of cotton fiber oxidation by action of various oxidants – hydrogen peroxide, Oxone, PINO – on quality of oxycellulose.
Methods. Oxidation of mechanically chopped cotton fibers by solution of hydrogen peroxide, Oxone and PINO was performed with air bubbling by the compressor through solution of cellulose in round-bottomed flask immersed in a water bath of the required temperature. The methods of experiment planning and optimization were used to determine the optimum process parameters.
Results. Studied oxidants for oxycellulose of cotton fibers to increase efficiency are in the following order: hydrogen peroxide – Oxone – PINO. The method of full factorial experiment was used to determine the adequate regression equations that describe the process of oxycellulose obtaining by action of Oxone and PINO, and the Gauss-Seidel method was used to determine the optimal values of technological parameters of oxycellulose obtaining. It is shown that oxidation of cotton fibers for optimal values of technological parameters allows getting oxycellulose with the content of carboxyl groups to 3 %.
Conclusions. The obtained oxycellulose can be used in medicine as a component of non-toxic, hemostatic, antimicrobial materials.
References
D. Klemm et al., “Nanocelluloses: a new family of nature-based materials”, Angew. Chem. Int. Ed., vol. 50, рр. 5438–5466, 2011.
M. Floor et al., “Preparation and calcium complexation of oxidized polysaccharides. II: Hydrogen peroxide as co-reactant in the chlorite oxidation of dialdehyde glucans”, Recueil des Travaux Chimiques des Pays-Bas, vol. 108, no. 10, pp. 323–394, 1989.
R.L. Stilwell et al., “Oxidized cellulose: chemistry, processing and medical applications”, Drug Target. Recov. HandbookBiodegr. Polym., vol. 7, pp. 291–306, 1997.
D.S. Zimnitsky et al., “Synthesis and characterization of oxidized cellulose”, J. Polymer Sc. Part A: Polymer Chem., vol. 42, no. 19, pp. 4785−4791, 2004.
DuPont™ Oxone® Monopersulfate Compound, General Technical Atributes, 2008, рр. 1–4.
L. Zhou et al., “Selective oxidation of cellulose catalyzed by NHPI/Co(OAc)2 using air as oxidant”, Cellulose, vol. 21, no. 6, pp. 4059–4065, 2014.
G. Biliuta et al., “Mild oxidation of cellulose fibers using dioxygen as ultimate oxidizing agent”, Digest J. Nanomat. Biostructures, vol. 6, no. 1, pр. 291–297, 2011.
TAPPI Test Methods.Atlanta: Tappi Press, 2004.
J. Milanovich et al., “Strucrure and properties of TEMPO-oxidized cotton fibers”, Chem. Industry Chem. Eng. Quarterly, vol. 18, no. 3, pр. 473–481, 2012.
A.G. Bondar, An Experiment in the Optimization of the Processes of Chemical Technology. Kyiv, USSR: Vyshcha Shkola, 1980 (in Russian).
Downloads
Published
Issue
Section
License
Copyright (c) 2017 NTUU KPI Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work