Obtaining of Oxycellulose from Cotton Fibers by Action of Various Oxidants

Валерій Анатолійович Барбаш, Юлія Ярославівна Нікітюк, Ірина Михайлівна Дейкун

Abstract


Background. Development of production technologies of materials for various purposes of alternatives to crude oil and natural gas sources of raw material, in particular cellulose.

Objective. To determine the optimal values of technological parameters of cotton fiber oxidation by action of various oxidants – hydrogen peroxide, Oxone, PINO – on quality of oxycellulose.

Methods. Oxidation of mechanically chopped cotton fibers by solution of hydrogen peroxide, Oxone and PINO was performed with air bubbling  by the compressor through solution of cellulose in round-bottomed flask immersed in a water bath of the required temperature. The methods of experiment planning and optimization were used to determine the optimum process parameters.

Results. Studied oxidants for oxycellulose of cotton fibers to increase efficiency are in the following order: hydrogen peroxide – Oxone – PINO. The method of full factorial experiment was used to determine the adequate regression equations that describe the process of oxycellulose obtaining by action of Oxone and PINO, and the Gauss-Seidel method was used to determine the optimal values of technological parameters of oxycellulose obtaining. It is shown that oxidation of cotton fibers for optimal values of technological parameters allows getting oxycellulose with the content of carboxyl groups to 3 %.

Conclusions. The obtained oxycellulose can be used in medicine as a component of non-toxic, hemostatic, antimicrobial materials.


Keywords


Cotton fiber; Hydrogen peroxide; Oxone; PINO; Oxycellulose; Carboxyl group

References


D. Klemm et al., “Nanocelluloses: a new family of nature-based materials”, Angew. Chem. Int. Ed., vol. 50, рр. 5438–5466, 2011.

M. Floor et al., “Preparation and calcium complexation of oxidized polysaccharides. II: Hydrogen peroxide as co-reactant in the chlorite oxidation of dialdehyde glucans”, Recueil des Travaux Chimiques des Pays-Bas, vol. 108, no. 10, pp. 323–394, 1989.

R.L. Stilwell et al., “Oxidized cellulose: chemistry, processing and medical applications”, Drug Target. Recov. HandbookBiodegr. Polym., vol. 7, pp. 291–306, 1997.

D.S. Zimnitsky et al., “Synthesis and characterization of oxidized cellulose”, J. Polymer Sc. Part A: Polymer Chem., vol. 42, no. 19, pp. 4785−4791, 2004.

DuPont™ Oxone® Monopersulfate Compound, General Technical Atributes, 2008, рр. 1–4.

L. Zhou et al., “Selective oxidation of cellulose catalyzed by NHPI/Co(OAc)2 using air as oxidant”, Cellulose, vol. 21, no. 6, pp. 4059–4065, 2014.

G. Biliuta et al., “Mild oxidation of cellulose fibers using dioxygen as ultimate oxidizing agent”, Digest J. Nanomat. Biostructures, vol. 6, no. 1, pр. 291–297, 2011.

TAPPI Test Methods.Atlanta: Tappi Press, 2004.

J. Milanovich et al., “Strucrure and properties of TEMPO-oxidized cotton fibers”, Chem. Industry Chem. Eng. Quarterly, vol. 18, no. 3, pр. 473–481, 2012.

A.G. Bondar, An Experiment in the Optimization of the Processes of Chemical Technology. Kyiv, USSR: Vyshcha Shkola, 1980 (in Russian).


GOST Style Citations


  1. Nanocelluloses: A new family of nature-based materials / D. Klemm, F. Kramer, S. Moritz et al. // Angew. Chem. Int. Ed. – 2011. – 50. – P. 5438–5466.
     
  2. Preparation and calcium complexation of oxidized polysaccharides. II: Hydrogen peroxide as co-reactant in the chlorite oxidation of dialdehyde glucans / M. Floor, L.P.M. Hofsteede, A.P.G. Kieboom et al. // Recueil des Travaux Chimiques des Pays-Bas. – 1989. – 108, № 10. – P. 323–394.
     
  3. Oxidized cellulose: chemistry, processing and medical applications / R.L. Stilwell, M.G. Marks, L. Saferstein, D.M. Wiseman // Drug Target. Recov. HandbookBiodegr. Polym. – 1997. – 7. – P. 291–306.
     
  4. Zimnitsky D.S., Yurkshtovich T.L., Bychkovsky P.M. Synthesis and characterization of oxidized cellulose // J. Polymer Sci. Part A: Polymer Chem. – 2004. – 42, № 19. – P. 4785−4791.
     
  5. DuPont™ Oxone® Monopersulfate Compound: General Technical Atributes. – 2008. – P. 1–4.
     
  6. Selective oxidation of cellulose catalyzed by NHPI/Co(OAc)2 using air as oxidant / L. Zhou, H. Wu, X. Yang, J. Xu // Cellulose. – 2014. – 21, № 6. – P. 4059–4065.
     
  7. Mild oxidation of cellulose fibers using dioxygen as ultimate oxidizing agent / G. Biliuta, L. Fras, V. Harabagiu, S. Coseri // Digest J. Nanomat. Biostructures. – 2011. – 6, № 1. – P. 291–297.
     
  8. TAPPI Test Methods. – Atlanta: Tappi Press, 2004.
     
  9. Milanovich J., Kostic M., Skundric P. Strucrure and properties of TEMPO-oxidized cotton fibers // Chem. Industry Chem. Eng. Quarterly. – 2012. – 18, № 3. – P. 473–481.
     
  10. Бондарь А.Г. Планирование эксперимента при оптимизации процессов химической технологии. – К.: Вища школа, 1980. – 263 с.




DOI: https://doi.org/10.20535/1810-0546.2016.3.65694

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 NTUU KPI