Efficiency of Magnetically Labelled Biosorbent Based on Sacharomyces cerevisiae Yeast for Sewage Treatment

Світлана Василівна Горобець, Юлія Миколаївна Чиж, Олексій Вікторович Ковальов, Ігор Олександрович Шпетний

Abstract


Problems. The problems of magnetically labeled biosorbent (MLBS) associated with a reduction its sorption capacity due to competition of magnetic nano- and micro-particles and heavy metal ions for binding sites on the surface resulting biosorbent.

Objective. The main goal is to investigate the effectiveness of removal of Cu2+ ions by magnetically labeled biosorbent based Sacharomyces cerevisiae yeast by mixing magnetohydrodynamic (MHD) in crossed electric and magnetic fields and set the optimal technological parameters of the process.

Methods of implementation. The study was conducted at the experimental setup for modification of biosorbent in external electric and magnetic fields.

Results. In experimental studies it was found that the optimum of the pH for the manufacture of magnetically labeled biosorbent by MHD mixing in crossed electric and magnetic fields is pH = 2.5. It is shown that at pH = 2.5 is the maximum extraction of copper cations after 10 minutes at MHD mixing.

Conclusions. The optimal preparation time of MLBS by MHD mixing in crossed electric and magnetic fields, is 6 minutes. We studied magnetic susceptibility of complexes magnetic labels – yeast cell, set the optimum of technological parameters of the process: mixing time, pH value, magnetic field and electric field, studied the stability of the magnetic properties of MLBS.

 Magnetically labelled biosorbent; Biosorption; Magnetic nanoparticles; Crossed electric and magnetic fields


Keywords


Magnetically labelled biosorbent; Biosorption; Magnetic nanoparticles; Crossed electric and magnetic fields

References


Y.M. Pleskachevsky et al., “The Belarusian scientific and technical program “tribotechnology”, Friction and Wear, vol. 16, no. 3, pp. 404–415, 1995 (in Russian).

L.A. Sivachenko et al., “Wear problem working, grinding, crushing machines”, Friction and Wear, vol. 16, no. 3, pp. 599–609, 1995 (in Russian).

J. Bao et al., “Wear-resistant WC composite hard coatings by brazing”, J. Mater. Eng. Perform., vol. 13, no. 4, pp. 385–388, 2004.

H. Berns, “Comparison of wear resistant MMC and white cast iron”, Wear, no. 254, pp. 47–54, 2003.

Yan-pei Song et al., “Elevated temperature sliding wear behavior of WCP-reinforced ferrous matrix composites”, J. Mater. Sci., no. 4, pp. 38–47, 2008.

S.P. Serebrjakov, Development of the Centrifugal Molding of Precision Castings. Yaroslavl, Russia: YaNP, 1986, 80 p. (in Russian).

A.M. Stepanchuk, “Performance features self-fluxing alloys based on iron obtained using non-deficient materials”, in Naukovy Notatky. Lutsk, Ukraine: LTDU, vol. 4, 2004, pp. 317–330 (in Ukrainian).

I.V. Saveliev, Course of General Physic, vol. 1, Mechanics, Fluctuations and Waves, Molecular Physics. Moscow, Russia: Nauka, 1970, 511 p. (in Russian).

A.I. Shevchenko, Centrifugal Molding under Flux. Kyiv, Ukraine: Naukova dumka, 1991, 192 p. (in Russian).

L.D. Landau and E.M. Lifshitz, Theoretical Physics, vol. 4. Hydrodynamics. Moscow, Russia: Fizmatlit, 2001, 736 p. (in Russian).

V.V. Mizgulin et al., “Modeling dense packing materials by Sphere-Polyhedra”, Computer Studies and Modeling, vol. 4, no. 4, pp. 757–766, 2012 (in Russian).

V.V. Sergeev et al., “Research density packaging stochastic particle vibration application”, in Naukovy Notatky. Lutsk, Ukraine: LTDU, vol. 14, 2009, pp. 279–288 (in Ukrainian).

A.N. Stepanchuk, Laws of Compaction of Powder Materials. Kyiv, Ukraine: UMK VO, 1992, 176 p. (in Russian).


GOST Style Citations


  1. Белорусская научно-техническая программа “Триботехника” / Ю.М. Плескачевский, В.Н. Савицкий, В.В. Кончиц, В.А. Барабась // Трение и износ. – 1995. – 16, № 3. – С. 404–415. 
       
  2. Сиваченко Л.А., Селезнев Н.Г., Шуляк В.А. Проблема износа рабочего оборудования дробильно-размольных машин // Трение и износ. – 1995. – 16, № 3. – С. 599–609. 
       
  3. Bao J., Newkirk J.W., Bao S. Wear-resistant WC composite hard coatings by brazing // J. Mater. Eng. Perform. – 2004. – 13, № 4. – Р. 385–388. 
       
  4. Berns H. Comparison of wear resistant MMC and white cast iron // Wear. – 2003. – 254. – P. 47–54. 
       
  5. Elevated temperature sliding wear behavior of WCP-reinforced ferrous matrix composites / Yan-pei Song, Hua Yu, Jun-guang He, Hui-gai Wang // J. Mater. Sci. – 2008. – № 4. – P. 38–47. 
       
  6. Серебряков С.П. Развитие центробежного литья точных отливок. – Ярославль: ЯПИ, 1986. – 80 с. 
       
  7. Степанчук А.М., Степанов О.В., Гончарук О.Й. Експлуатаційні властивості самофлюсівних сплавів на основі заліза, одержаних з використанням недефіцитної сировини // Наукові нотатки. – Луцьк: ЛТДУ, 2004. – Вип. 4. – C. 317–330. 
       
  8. Савельев И. В. Курс общей физики. – М.: Наука, 1970. – Т. I. Механика, колебания и волны, молекулярная физика. – 511 с. 
       
  9. Шевченко А.И. Центробежное литье под флюсом. – К.: Наук. думка, 1991. – 192 с. 
       
  10. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. – М.: Физматлит, 2001. – Т. VI. Гидродинамика. – 736 с. 
       
  11. Моделирование плотных материалов методом упаковки сферополиэдров / В.В. Мизгулин, Р.М. Кадушников, В.М. Алиевский, Д.М. Алиевский // Компьютерные исследования и моделирование. – 2012. – 4, № 4. – С. 757–766. 
       
  12. Сергеев В.В., Рудь В.Д., Гуменюк Л.О. Дослідження щільності стохастичних упаковок часток при застосуванні вібрацій // Наукові нотатки. – Луцьк: ЛДТУ. – 2009. – Вип. 14. – С. 279–288. 
        
  13. Степанчук А.Н. Закономерности прессования порошковых материалов. – К.: УМК ВО, 1992. – 176 с.                   




DOI: https://doi.org/10.20535/1810-0546.2015.3.61246

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 NTUU KPI