One-Dimensional Tin (IV) Oxide Nanostructures as Gas-Sensing Materials

Світлана Валеріївна Нагірняк, Тетяна Анатоліївна Донцова, Ігор Михайлович Астрелін

Abstract


Background. Gas sensors based on SnO2 are characterized by small size and low cost. However, its significant disadvantages are insufficient sensitivity, small selectivity and low stability. Therefore, the determination of basic parameters, a change that will create effective, highly sensitive and selective semiconductor sensors based on SnO2 nanostructures, is extremely important.

Objective. The purpose of this paper is to establish the main parameters affecting the sensitivity, selectivity and stability of semiconductor sensors.

Methods. A critical review of recent scientific literature is done. Found that the usage of 1D tin (IV) oxide nanostructures (as pure and doped) will increase the sensitivity and selectivity of the metal oxide sensors due to high values of surface to volume ratio and the creation of active centers in relation to the detected gases.

Results. It was determined that the creation of efficient and sensitive semiconductor sensors requires the use of 1D SnO2 nanostructures and their directed modification by various additives.

Conclusions.In terms of data presented in contemporary scientific literature, to create effective semiconductor tin (IV) oxide based sensors 3S parameters of these sensors need to be improved. From this point of view, 1D SnO2 nanostructures deserve special attention due to the totality of their physical and chemical properties. Vapor transport method (method CVD) is enough effective for the synthesis of 1D nanostructures. It secures superior performance in conjunction with relative simplicity and availability. And this method allows us to obtain single-crystal nanostructures of controlled morphology. However, as of day there is no almost information on the impact of operational parameters of CVD synthesis on physico-chemical characteristics of obtained nanosized SnO2. Therefore, the advanced study of scientific bases of purposeful synthesis and systematization of approach in the selection a dopant to increase selectivity of metal oxide gas sensors is the main task.

Keywords


Semiconductor sensor; Tin (IV) oxide; One-dimensional nanostructures; Vapor transport method; Additive

Full Text:

PDF

References


K. Ho Clifford et al., “Review of chemical sensors for in-situ monitoring of volatile contaminants”, Sandia National Laboratories,AlbuquerqueNM, Rep. SAND2001-0642, 2001. doi: 10.2172/780299

Yulong Xu et al., “Oxygen sensors based on semiconducting metal oxides: an overeview”, Sensors and Actuators В, vol. 65, pp. 2–4, 2000. doi: 10.1016/S0925-4005(99)00421-9

F. Menil et al., “Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines”, Sensors and Actuators В, vol. 67, pp. 1–23, 2000. doi: 10.1016/S0925-4005(00)00401-9

F. Seker et al., “Surface chemistry prototypical bulk II–VI and III–V semiconductors and implications for chemical sensing”, Chem. Rev, vol. 100, no. 7, pp. 2505–2536, 2000. doi: 10.1021/cr980093r

A. Lloyd Spetz et al., “High temperature catalytic metal field effect transistors for industrial applications”, Sensors and Actuators В, vol. 70, pp. 67–76, 2000. doi: 10.1016/S0925-4005(00)00559-1

S. Choopun et al., “Metal-oxide nanowires for gas sensors”, Recent Advances, vol. 21, no. 5, pp. 3–24, 2012. doi: 10.5772/54385

M.M. Abdullah et al., “Fabrication and testing of SnO2 thin films as a gas sensor”, Archives Appl. Sci. Res., vol. 4, no. 3, pp. 1279–1288, 2012.

B.E. Warren, X-ray Diffraction.New York: Dover Publications, Inc., 1990, 400 p.

V.V. Kryvetskiy et al., “Chemical modification of nanocrystalline tin dioxide for selective gas sensors”, Uspehi Himii, vol. 82, no. 10, pp. 917–941, 2013 (in Russian). doi: 10.1070/RC2013v082n10ABEH004366

M. Prudenziati and J. Hormadaly, Printed Films: Materials Science and Applications in Sensors, Electronics and Photonics. Elsevier, 2012, 608 p.

A. Cabot et al., “Influence of the catalytic introduction procedure on the nano-SnO2 gas sensor performances. Where and how stay the catalytic atoms?”, Sensors and Actuators B, vol. 79, pp. 98–106, 2001. doi: 10.1016/S0925-4005(01)00854-1

R. Díaz et al. “Electroless addition of catalytic Pd to SnO2 nanopowders”, Chem. Mater, vol. 13, no. 11, pp. 4362–4366, 2011. doi: 10.1021/cm011131h

J. Huang et al., “Gas sensors based on semiconducting metal oxide one-dimensional nanostructures”, Sensors, vol. 9, pp. 9903–9924, 2009. doi: 10.3390/s91209903

S.V. Nagirnyak et al., “Synthesis and properties of tin (IV) oxide obtained by CVD method”, NanoScale Res. Lett., vol. 10, pp. 1–14, 2015.

L.V. Astafieva et al., “An apparatus for manufacturing a film of tin dioxide”, Pribory i Tehnika Jeksperimenta, no. 5, pp. 235–237, 1980 (in Russian).

S.V. Nagirnyak et al., “Synthesis and Characterization of Nanodispersed Powders of Tin Oxide (IV) from Tin Oxalate (II)”, Naukovi Visti NTUU KPI, no. 2, pp. 151–155, 2012 (in Ukrainian).

T.A. Miller et al., “Nanosturctured tin dioxide materials for gas sensor applications”, Functional Nanomaterials, vol. 30, pp. 453–476, 2006.

V.G. Petruk et al., “Carbon monoxide CO sensors based on SnOx nanoparticles”, Zhurnal Tehnicheskoj Fiziki, vol. 77, is. 2, pp. 86–90, 2007 (in Russian).

N. Yamazoe, “New approaches for improving semiconductor gas sensors”, Sensors and Actuators, B. Chemical, vol. 5, pp. 7–19, 1991. doi: 10.1016/0925-4005(91)80213-4.

J.-M. Pan et al., “Structural study of ultrathin metal films on TiO2 using LEED, ARXPS and MEED”, Surface Sci., vol. 291, is. 3, pp. 381–394, 1993. doi: 10.1016/0039-6028(93)90455-S

J. Pan et al., “One dimensional SnO2 nanostructures: synthesis and application”, J. Nanotechnol., vol. 2012, 12 p., 2012. doi: 10.1155/2012/917320

L.V. Thong et al., “One-chip fabrication of SnO2-nanowire gas sensor: the effect of growth time on sensor performance”, Sensors and Fctuators, B. Chemical, vol. 146, is. 1, pp. 361–367, 2010. doi: 10.1016/j.snb.2010.02.054

T. Dontsova et al., “Stabilization of nanoscale tin (IV) oxide on the surface of carbon nanotubes”, J. Electric. Eng., vol. 2, no. 1, pp. 34–38, 2014.

G. Cao and Y. Wang, Nanostructures and Nanomaterials: Synthesis, Properties and Applications.Singapore: World Scientific Publisher Co., 2011, 581 p.

Dai Zu Rong et al., “Novel nanosturctures of functional oxides synthesized by thermal evaporation”, Adv. Functional Mater., vol. 13, pp. 9–24, 2003. doi: 10.1002/adfm.200390013

V.F. Gromov et al., “Mechanisms for gas sensing in the tin dioxide based conductometric sensors to detect reducing gases”, Zhurnal Rossijskogo Himicheskogo Obshhestva im. D.I. Mendeleeva, vol. 5, pp. 80–87, 2008 (in Russian).

V.V. Petrov and A.N. Koroljov, Nanosized Oxide Materials for Gas Sensors.Taganrog,Russia: Publishing house TTI SFU, 2008, 153 p. (in Russian).

S.R. Morrison, “Selectivity in semiconductor gas sensors”, Sensors and Actuators B, vol. 12, pp. 425–440, 1987. doi: 10.1016/0250-6874(87)80061-6

A. Althainza et al., “Low temperature deposition of glassmembranes for gas sensors”, Thin Sol Films, vol. 241, pp. 344–347, 1994. doi: 10.1016/0040-6090(94)90454-5

A. Ryzhikov et al., “Al2O3 (M = Pt, Ru) catalytic membranes for selective semiconductor gas sensors”, Sensors and Actuators B, vol. 109, pp. 91–96, 2005. doi: 10.1016/j.snb.2005.03.004

S.Y. Davydov et al., Adsorption Phenomena in Polycrystalline Semiconductor Sensors. St. Petersburg, Russia, 1998, 56 p. (in Russian).


GOST Style Citations


  1. Review of chemical sensors for in-situ monitoring of volatile contaminants / C.K. Ho, M.T. Itamura, M. Kelley, R.C. Hughes: Report SAND2001-0642. – AlbuquerqueNM: Sandia National Laboratories, 2001. – 34 p. doi: 10.2172/780299.

  2. Xu Y., Zhou X., Sørensen O.T. Oxygen sensors based on semiconducting metal oxides: an overview // Sensors and Actuators В. – 2000. – 65. – P. 2–4. doi: 10.1016/S0925-4005(99)00421-9.

  3. Menil F., Coillard V., Lucat C. Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines // Sensors and Actuators В. – 2000. – 67. – P. 1–23. doi: 10.1016/S0925-4005(00)00401-9.

  4. Surface chemistry prototypical bulk II–VI and III–V semiconductors and implications for chemical sensing / F. Seker, K. Meeker, Т Kuech., A.B. Ellis // Chem. Rev. – 2000. – 100, № 7. – P. 2505–2536. doi: 10.1021/cr980093r.

  5. High temperature catalytic metal field effect transistors for industrial applications / A. Lloyd Spetz, P. Tobias, L. Uneus et al. //  Sensors and Actuators В. – 2000. – 70. – P. 67–76. doi: 10.1016/S0925-4005(00)00559-1.

  6. Choopun S., Hongsith N., Wongrat E. Metal-oxide nanowires for gas sensors // Recent Advances. – 2012. – 21, № 5. – P. 3–24. doi: 10.5772/54385.

  7. Abdullah M.M., Suhail M.H., Abbas S.I. Fabrication and testing of SnO2 thin films as a gas sensor // Archives Appl. Sci. Res. – 2012 – 4, № 3. – P. 1279–1288.

  8. Warren B.E. X-ray Diffraction. – New York:Dover Publications, Inc., 1990. – 400 p.

  9. Кривецкий В.В., Румнцева М.Н., Гаськов А.М. Химическая модификация нанокристаллического диоксида олова для селективных газовых сенсоров // Успехи химии. – 2013. – 82, № 10. – С. 917–941. doi: 10.1070/ RC2013v082n10ABEH004366.

  10. Prudenziati M., Hormadaly J. Printed Films: Materials Science and Applications in Sensors, Electronics and Photonics. – Elsevier, 2012. – 608 p.

  11. Influence of the catalytic introduction procedure on the nano-SnO2 gas sensor performances. Where and how stay the catalytic atoms? / A. Cabot, A. Diéguez, A. Romano-Rodríguez et al. // Sensors and Actuators B. – 2001. – 79. – P. 98–106. doi: 10.1016/S0925-4005(01)00854-1.

  12. Electroless addition of catalytic Pd to SnO2 nanopowders / R. Díaz, J. Arbiol, A. Cirera et al. // Chem. Mater. – 2011. – 13, № 11. – P. 4362–4366. doi: 10.1021/cm011131h.

  13. Huang J., Wan Q. Gas sensors based on semiconducting metal oxide one-dimensional nanostructures // Sensors. – 2009. – 9. – P. 9903–9924. doi: 10.3390/s91209903.

  14. Synthesis and properties of tin (IV) oxide obtained by chemical vapor deposition method / S.V. Nagirnyak, V.A. Lutz, T.A. Dontsova et al. // NanoScale Res. Lett. – 2015. – 10. – P. 1–14.

  15. Астафьева Л.В., Скорняков Г.П. Установка для получения пленки двуокиси олова // ПТЭ. – 1980. – № 5. – С. 235–237.

  16. Синтез і характеристика нанодисперсних порошків оксиду стануму (IV) з оксалату стануму (ІІ) / С.В. Нагірняк,   Т.А. Донцова, І.М. Астрелін та ін. // Наукові вісті НТУУ “КПІ”. – 2012. – № 2. – С. 151–155.

  17. Nanosturctured tin dioxide materials for gas sensor applications / T.A. Miller, S.D. Bakrania, C. Perez, M.S. Wooldridge // Functional Nanomaterials. – 2006. – 30. – P. 453–476.

  18. Петрук В.Г., Кравец А.Г. Сенсоры угарного газа СО на основе наночастиц SnOx // Журнал технической физики. – 2007. – 77, вып. 2. – С. 86–90.

  19. Yamazoe N. New approaches for improving semiconductor gas sensors // Sensors and actuators, B. Chemical. – 1991. – 5. – P. 7–19. doi: 10.1016/0925-4005(91)80213-4

  20. Structural study of ultrathin metal films on TiO2 using LEED, ARXPS and MEED / J.-M. Pan, B.L. Maschhoff, U. Diebold, T.E. Madey // Surface Sci. – 1993. –  291, is. 3. – P. 381–394. doi: 10.1016/0039-6028(93)90455-S

  21. Pan J., Hao S., Sanjay M. One-dimensional SnO2 nanostructures: synthesis and application // J. Nanotechnol. – 2012. – 2012. – 12 p. doi: 10.1155/2012/917320

  22. One-chip fabrication of SnO2-nanowire gas sensor: the effect of growth time on sensor performance / L.V. Thong, N.D. Hoa, D.T.T. Le et al. // Sensors and actuators, B. Chemical. – 2010. – 146, is. 1. – P. 361–367. doi: 10.1016/j.snb.2010.02.054.

  23. Stabilization of nanoscale tin (IV) oxide on the surface of carbon nanotubes / T. Dontsova, I. Ivanenko, I. Astrelin, S. Nagirnyak // J. Electric. Eng. – 2014. – 2, no. 1. – P. 34–38.

  24. Cao G., Wang Y. Nanostructures and Nanomaterials: Synthesis, Properties and Applications. – Singapore: World Scientific Publisher Co., 2011. – 581 p.

  25. Zu Rong Dai, Pan Zheng Wei, Wang Zhong L. Novel nanosturctures of functional oxides synthesized by thermal evaporation // Adv. Functional Mater. – 2003. – 13. – P. 9–24. doi: 10.1002/adfm.200390013.

  26. Механизмы сенсорного эффекта в кондуктометрических датчиках на основе диоксида олова для детектирования газов-восстановителей / В.Ф. Громов, Г.Н. Герасимов, Т.В. Белышева, Л.И. Трахтенберг // Ж. Рос. хим. об-ва им. Д.И. Менделеева. – 2008. – Вып. 5 – С. 80–87.

  27. Петров В.В., Королев А.Н. Наноразмерные оксидные материалы для сенсоров газов. – Таганрог: Изд-во ТТИ ЮФУ. – 2008. – 153 с.

  28. Morrison S.R. Selectivity in semiconductor gas sensors // Sensors and Actuators B. – 1987. – 12. – P. 425–440. doi: 10.1016/0250-6874(87)80061-6.

  29. Low temperature deposition of glassmembranes for gas sensors / A. Althainza, A. Dahlke, J. Goschnick, H.J. Ache // Thin Sol Films. – 1994. – 241. – P. 344–347. doi: 10.1016/0040-6090(94)90454-5.

  30. Ryzhikov A., Labeau M., Gaskov A. Al2O3 (M = Pt, Ru) catalytic membranes for selective semiconductor gas sensors // Sensors and Actuators B. – 2005. – 109. – P. 91–96. doi: 10.1016/j.snb.2005.03.004.

  31. Давыдов С.Ю., Мошников В.А., Томаев В.В. Адсорбционные явления в поликристаллических полупроводниковых сенсорах. – СПб: [б. и.], 1998. – 56 с.




DOI: https://doi.org/10.20535/1810-0546.2015.5.61244

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 NTUU KPI