The Studies of the Nickel Precipitation Kinetics from Solution
DOI:
https://doi.org/10.20535/1810-0546.2015.3.60713Keywords:
Nickel nitrate, Urea, Kinetics of deposition, Induction period, Order of reaction, Mathematical model, TimeAbstract
Background. In the nickel-containing catalysts production there is the technological stage of the intermediate insoluble nickel compounds. The studies of the nickel precipitation kinetics by the urea from the nickel nitrate solution were carried out that are useful for the design and characteristics calculation of these processes,
Objective. The purpose is in constructing of mathematical model for the nickel precipitation process.
Methods. A thermodynamic evaluation of possible reactions in solution was carried out. In isothermal conditions at the temperatures of 90 and 100 °C the kinetic curves of nickel precipitation from solutions were obtained at different initial concentrations. On the curves several sections were marked: the induction period and the main reaction period that are analyzed by different methods. The dependence of the induction period value from the conditions of the process was analyzed using multiple regression approach. The kinetic equation of first order reaction was chosen for the main period and the temperature dependence of the rate according to Arrhenius equation was determined.
Results. It is established that the value of the induction period depends on the process temperature and the concentration of nickel, the regression equation was obtained. It is shown that the basic section of the precipitation process kinetic curves are described by the equation of the first order at the different initial concentrations of metal in all the investigated temperature range, reaction rate constant of the first order and the activation energy of the process were calculated.
Conclusions. The proposed kinetic model of precipitation that consists of equations system for calculating the time of reaction was obtained. The value of the activation energy of the process indicates a kinetic stage of process tendency.
References
K. An et al., “Colloid chemistry of nanocatalysts: A molecular view”, J. Colloid Interface Sci., no. 373, pp. 1–13, 2012.
M.A. Rhamdhani et al., “Basic nickel carbonate: Part I. Microstructure and phase changes during oxidation and reduction processes”, Metallurg. Mater. Transact., vol. 39, pp. 218–233, 2008.
H.H. Kung and M.C. Kung, “Nanotechnology: applications and potentials for heterogeneous catalysis”, Catal. Today, vol. 4, p. 219, 2004.
L.-B. Kong et al., “Fabrication of flower-like Ni3(NO3)2(OH)4 and their electrochemical properties evaluation”, Mater. Res. Bull., vol. 47, is. 7, pp. 1641–1647, 2012.
E.V. Tantsyura, “The investigations of basic nickel carbonates precipitation process”, Visnyk SNU im. V. Dalya, no. 9, pp. 164–168, 2014 (in Russian).
G. Sharlo, Methods of Analytical Chemistry. The Quantitative Analysis of Inorganic Compounds. Moscow, Russia: Himiya, 1965, 976 р. (in Russian).
Chemical Vapor Deposition of Metals from Aqueous Solutions, V.V. Sviridova, Ed. Minsk, Belarus: Izdatelstvo “Universitetskoe”, 1987, 270 p. (in Russian).
B. Delmon, Kinetics of Heterogeneous Reactions. Moscow, Russia: Mir, 1972, 556 р. (in Russian).
A.A. Bezdenezhnyih, Engineering Methods for the Equations of Reaction Rate and Calculate the Kinetic Constants. Leningrad, USSR: Himiya, 1973, 256 p. (in Russian).
L. Goh et al., “A stochastic model for nucleation kinetics determination in droplet-based microfluidic systems”, Crystal Growth Design, vol. 10, pp. 2515–2521, 2010.
G.M. Voldman and A.N. Zelikman, Theory of Hydrometallurgical Processes. Moscow, Russia: Intermet Inzhiniring, 2003, 464 р. (in Russian).
Downloads
Published
Issue
Section
License
Copyright (c) 2017 NTUU KPI Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work