### Trajectory Behavior of Weak Solutions of the Piezoelectric Problem with Discontinuous Interaction Function on the Phase Variable

#### Abstract

#### Keywords

#### Full Text:

PDF (Українська)#### References

*S. Park et al., *“Crack extension in piezoelectric materials,” SPIE. Smart Materials, V.K. Varadan, Ed., vol. 2189, pp. 357—368, 1994.

*X.D. Wang et al., “*Coupled behaviour of interacting dielectric cracks in piezoelectric materials,” Int. J. Fracture, vol. 132, pp. 115—133, 2005.

*Мірошниченко** **А**.**П**., **Шорохов** **А**.**Є**. *Особливості керування параметрами п’єзокерамічних двигунів // Вісник КНУТД. — 2012. — № 3. — С. 33—37.

*J. Burns et al., “*Representation of Feedback Operators for Hyperbolic Systems,” Computation and Control IV. Progress in Systems and Control Theory, vol. 20, pp. 57—73, 1995.

*H. Khalil, *Nonlinear systems.New Jersey: Prentice Hall, 2002, 750 p.

*C**. Rowley et al., “*Dynamic and Closed-Loop Control,” Fundamentals and Applications of Modern Flow Control, vol. 231, 40 p., 2009.

*Z. Naniewicz, P. Panagiotopoulos*, Mathematical theory of hemivariational inequalities and applications. Nonconvex Optimization and Its Applications. Pure and Applied Mathematics. A Series of Monographs and Textbooks. New York: Marcel Dekker, Inc., 1995, 267 p.

*V. Dem’yanov et al.*, “Quasidifferentiability and nonsmooth modeling in Mechanics, Engineering and Economics,” Nonconvex Optimization and Its Applications, vol. 10. Dordrecht: Kluwer Academic Publishers, 1996, 348 p.

*P.D. Panagiotopoulos et al., *“The nonmonotone skin effects in plane elasticity problems obeying to linear elastic and subdifferential laws,” Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 70, іs. 1, pp. 13—21, 1990.

*Панагиотопулос П. *Неравенства в механике и их приложения. Выпуклые и невыпуклые функции энергии: пер. с англ. — М.: Мир, 1989. — 494 с.

*M**.Z. Zgurovsky et al., *“Automatic feedback control for one class of contact piezoelectric problems,” System research and information technologies, no. 1, pp. 56—68, 2014.

*Liu Z. et al., *“Noncoercive Damping in Dynamic Hemivariational Inequality with Application to Problem of Piezoelectricity,” Discrete and Continuous Dynamical Systems, vol. 9, no. 1, pp. 129—143, 2008.

*Zgurovsky M.Z. et al., *“Long-time behavior of solutions for quasilinear hyperbolic hemivariational inequalities with application to piezoelectricity problem,” Applied Mathematics Letters, vol. 25, pp. 1569—1574, 2012.

*M**.Z. Zgurovsky et al., *Evolution Inclusions and Variation Inequalities for Earth Data Processing III. Long-Time Behavior of Evolution Inclusions Solutions in Earth Data Analysis. Series: Advances in Mechanics and Mathematics. Berlin: Springer-Verlag, 2012, 330 p.

*N.V. Gorban et al., *“On Global Attractors for Autonomous Damped Wave Equation with Discontinuous Nonlinearity,” in Continuous and Distributed Systems: Theory and Applications. Solid Mechanics and Its Applications, M.Z. Zgurovsky, V.A. Sadovnichiy, Eds., vol. 211, pp. 221—237, 2014.

*F**.H. Clarke, *Optimization and Nonsmooth Analysis. New York: Wiley, 1983, 308 p.

*M**. Vishik et al., *“Trajectory and Global Attractors of Three-Dimensional Navier-Stokes Systems,” Math. Notes, vol. 71, no. 2, pp. 177—193, 2002.

*J.M. Ball, *“Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations,” J. of Nonlinear Sci., vol. 7, no. 5, pp. 475—502, 1997.

*V.S. Melnik et al., *“On attractors of multivalued semiflows and differential inclusions,” Set-Valued Analysis, vol. 6, no. 1, pp. 83—111, 1998.

#### GOST Style Citations

DOI: https://doi.org/10.20535/1810-0546.2014.2.60384

Copyright (c) 2017 NTUU KPI