Influence of the Middle Magnetic Field on the Disperse Iron-Oxygen Mineral Phase Formation by Applyng the Rotation-Corrosion Dispergation Method

Authors

  • Олена Миколаївна Лавриненко F.D. Ovcharenko Institute of Bio-Colloid Chemistry of the NASU, Ukraine
  • Олеся Юріївна Павленко F.D. Ovcharenko Institute of Bio-Colloid Chemistry of the NASU, Ukraine

DOI:

https://doi.org/10.20535/1810-0546.2014.2.60209

Keywords:

Disperse iron-oxygen mineral phases, The rotation-corrosion dispergation method, Iron spinel ferrite, Localization of the phase formation process

Abstract

The purpose of this work was to investigate the process of the disperse iron-oxygen mineral phase formation by applying the rotation-corrosion dispergation method when the middle magnetic field affected the system. The rotation-corrosion dispergation method is based on the principle of iron (steel) electrode corrosion when its surface contacts either with air or dispersion medium. The constant magnetic field was influencing the system during the process of the phase formation. The magnetic field intensity was 0,6—1,9 kOe and remanent magnetic induction was 0,7—1,3 T. As the dispersion medium distilled water, CoCl2 and ZnCl2 solutions were chosen. We used X-ray diffraction, X-ray fluorescence spectroscopy and transmission electron microscopy as the main methods of the investigation. The iron spinel ferrite particles formed on the steel surface have a spherical form; their development takes place according to the contact-recrystallization mechanism. The magnetic interaction between particles increased when magnetic field influenced the system. Under such conditions the ferromagnetic particles formed big aggregates and they did not separate from the electrode surface. The paramagnetic lepidocrocite particles were formed in near electrode film according to solution-reprecipitation mechanism and weak crystallized ferrihydrite, Fe(II)-Fe(III) LDH and goethite particles coagulated and precipitated in the form of a fluffy sediment. It was found that the imposition of the middle magnetic field leads to the formation of monomineral disperse phases of iron oxyhydroxides, iron oxides and iron spinel ferrites. The obtained iron-oxygen particles can be used for creating different organosols that are suitable for biomedical investigation.

Author Biographies

Олена Миколаївна Лавриненко, F.D. Ovcharenko Institute of Bio-Colloid Chemistry of the NASU

Olena Lavrinenko,

doctor of chemical science, senior researcher, senior fellow

Олеся Юріївна Павленко, F.D. Ovcharenko Institute of Bio-Colloid Chemistry of the NASU

Olesya Pavlenko,

postgraduate student

References

Глинчук М.Д., Рагуля А.В. Наноферроики. — К.: Наук.думка, 2010. — 312 с.

Суздалев И.П., Максимов Ю.В., Имшенник В.К. и др. Оксиды железа в нанокластерном состоянии. Методы синтеза, структура и свойства // Рос. нанотехнол. — 2007. — 2, № 5-6. — С. 73—84.

Магниточувствительные нанокомпозиты: синтез, свойства, стратегии медико-биологического применения / П.П. Горбик, А.Л. Петрановская, М.П. Турелик [и др.] // Наноматериалы и нанокомпозиты в медицине, биологии и экологии ; сост. П.П. Горбик, В.В. Туров. — К. : Наук. думка, 2011. — С. 188—309.

U. Schwertmann and R.M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, 2th,Compl.Rev. and Ext. Ed.. Wiley-VCH: Wienheim, 2000, p. 185.

T.M. Tillotson et al., “Nanostructured energetic materials using sol—gel methodologies,” J. Non-Cryst. Solids, vol. 285, pp. 335—338, 2001.

S. Santra et al., “Synthesis and characterization of silicacoated iron oxide nanoparticles in microemulsion: the effect of non-ionic surfactants,” Langmuir, vol. 17, pp. 2900—2906, 2001.

Долинский Г.А., Лавриненко Е.Н., Тодор И.Н. и др. Каталитическая активность наноразмерных феррошпинелей кобальта и меди в фосфолипидной модельной системе // Наноструктурное материаловед. — 2010. — № 1. — С. 59—68.

O.M. Lavrynenko, “Nanosized iron oxide and hydroxide minerals as products of the phase formation in iron— carbon—water—oxygen systems,” Nanostudio, no. 4, pp. 5—40, 2012.

Лавриненко О.М. Одержання композиційних структурованих систем на основі ферум-оксигенвмісних мінералів, їх структура та властивості: Автореф. дис. … докт. хім. наук: спец. 02.00.11 Колоїдна хімія. — К., 2013. — 40 с.

Прокопенко В.А., Лавриненко Е.Н., Ващенко А.А. и др. Адаптация традиционных физико-химических методов разделения для дисперсных фаз железо-кислородных соединений // Экотехнол. и ресурсосбер. — 2005. — № 6. — С. 36—42.

Стали и сплавы высоколегированные, коррозионно-стойкие, жаростойкие и жаропрочные (деформируемые). Марки: ГОСТ 5632-61. — М.: Стандартгиз, 1962.

Горшков В.С., Тимошов В.В., Савельев В.Г. Методы физико-химического анализа вяжущих веществ. — М.: Высш. шк., 1981. — 336 с.

Прокопенко В.А., Лавриненко Е.Н., Мамуня С.В. Локализация процессов образования наноразмерных железо-кислородных структур в системе Fe0-H2O-O2 // Наносист., наноматер., нанотехнол. — 2005. — 3, вип. 2. — С. 513—520.

T. Sugimoto et al., “Formation of Uniform Spherical Magnetite Particles by Crystallization from Ferrous Hydroxide Gels,” J. Coll. Interf. Sci., vol. 74, no. 1, pp. 227—243, 1980.

Ph. Refait et al., “Formation of “ferric green rust” and/or ferrihydrite by fast oxidation of iron(II—III) hydroxychloride green rust,” Corr. Sci., vol. 45, pp. 2435—2449, 2003.

E. Tronc et al., “Transformation of ferric hydroxide into spinel by Fe(II) adsorption,” Langmuir, vol. 8, pp. 313—319, 1992.

R. Srinivasan et al., “Structural features in the formation of the green rust intermediate and γ-FeOOH,” Coll. Surf. A: Physicochem.Eng.Asp., vol. 113, no. 1, pp. 97—105, 1996.

Ph. Refait et al., “Coprecipitation thermodynamics of iron(II—III) hydroxysulphate green rust from Fe(II) and Fe(III) salts,” Corros. Sci., vol. 45, pp. 659—676, 2003.

Published

2016-02-15

Issue

Section

Art