Temperature Measurement Uncertainty of Patient by Medical Thermal Imager
DOI:
https://doi.org/10.20535/1810-0546.2014.6.57682Keywords:
Medical thermal imager, Temperature measurement uncertainty, Noise equivalent temperature differenceAbstract
The purpose of this article is to develop the method of estimation and research of measurement temperature uncertainty by the medical thermal imager in pathological zones depending on the distance between the patient and the thermal imager. The proposed method is based on the noise equivalent temperature difference (NETD) which depends on the linear objective magnification of the thermal imager. The absolute measurement uncertainty is defined as the difference between two NETD in the case the object of observation is at a distance of temperature measurement and at infinity of the thermal imager. The obtained equations for the estimation of the absolute and the fractional temperature measurement uncertainty depending on the objective magnification and the distance between the thermal imager and the patient. The required interval of the change in objective magnification has been defined, which depends on the pathogenic zone dimensions, micro bolometer matrix dimensions and the objective focus length. The example of the appliance of the proposed method for the determination of the temperature measurement uncertainty by the thermal medical imager has been considered. It also has been found out that when the patient is on the distance more than 1 m far from the medical thermal imager the examined measurement uncertainties can be not considered. Over a distance of 50 cm the significant uncertainties take place, which are recommended to compensate by the using of the special infrared objectives.
References
N.A. Diakides and J.D. Bronzino, Medical Infrared Imaging. New York: CRC Press, Taylor & Francis Group, 2008, 452 p.
Колесов С.Н., Воловик М.Г., Прилучный М.А. Медицинское теплорадиовидение: современный методологический подход. – Нижний Новгород: ФГУ “НИИТО Росмедтехнологий”, 2008. – 184 с.
Блюмин Р.Б. Технологии бесконтактной диагностики // Вестник новых мед. технол. – 2008. – 15, № 4. – С. 146–149.
Волошин В.Н. Использование радиотермометрии при определении уровня и способа ампутации нижних конечностей у больных с критической ишемией // Совр. технол. в мед. – 2011. – № 4. – С. 95–98.
Вайнер Б.Г. Матричное тепловидение в фи-зиологии. – Новосибирск: Изд-во СО РАН, 2004. – 188 с.
Колобродов В.Г., Лихоліт М.І. Проектування тепловізійних і телевізійних систем спостереження: Підручник. – К.: НТУУ “КПІ”, 2007. – 364 с.
N. Schuster and V.G. Kolobrodov, Infrarotthermographie (Zweite, uberarbeitete und erweiterte Ausgabe). Berlin: Wiley-VCH Verlag Gmb Co. KGaA, 2004, 356 p.
Теория оптических систем / Б.Н. Бегунов, Н.П. Заказ¬нов, С.И. Кирюшин, В.И. Кузичев. – М.: Машиностроение, 1981. – 432 с.
Современные медицинские тепловизоры / Г.С. Мельников, В.М. Самков, Ю.И. Солдатов, В.В. Коротаев // Тепловидение в медицине и промышленности: Матер. 9-й Междунар. конф. “Прикладная оптика – 2010”, 18–22 окт. 2010 г., Санкт–Петербург. – СПб, 2010. – С. 11–17.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 NTUU KPI Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work