Maximal Range of Vision Thermovision’s Objective Design

Валентин Георгійович Колобродов, Валентин Іванович Гордієнко, Володимир Іванович Микитенко, Сергій Іванович Черняк


Background. The work’s background lies in the thermal imaging surveillance systems (TISS) and their input blocks analysis and synthesis.

Objective. Objective of the study is to develop a calculation method for TISS input block design, based on the assumption of specified maximum range of observation.

Methods. The application of the linear systems theory to the TISS basic mathematical model, which considers basic components of signal transformation process from object to observer.

Results. A simplified method for the TISS lens synthesis was proposed on the maximum range of observation at given probability of performing visual task criterion. Some approaches from STANAG 4347, which defines TISS nominal ranger performance, were used in the method. The accuracy of calculation algorithms has been proved on the example of calculation of French thermal imaging camera Catherine-FC input unit.

Conclusions. The developed method is compatible with STANAG 4347 and also allows thermal imaging system analysis and matching characteristics of infrared lens and detector.


Synthesis of a thermal imaging system; Surveillance range; Infrared lens


M.M.Tarasov and Yu.G. Yakushenkov, Forward Looking Infrared Systems. Moscow, Russia: Logos, 2004, 444 p. (in Russian).

FLIR Website. Description of the Industry’s Technology [Online]. Avaliable: MMC/Brochures/T820147/T820147_APAC.pdf

Raytheon website. Modern thermal imaging technology [Online]. Avaliable:­mal.html

V.G. Kolobrodov and N.I. Liholit, Development of Thermovision and Television Systems. Kyiv, Ukraine: NTUU “KPI”, 2007, 364 p. (in Ukrainian).

M.M. Miroshnikov, Theoretical Foundation for Optoelectronic Devices. Leningrad, USSR: Mashinostroenie, 1983, 696 p. (in Russian).

Yu.G. Yakushenkov, Theory and Calculation of Optoelectronic Instruments. Moscow, Russia: Logos, 2004, 472 p. (in Russian).

M.M. Tarasov and Yu.G. Yakushenkov, Two- and Multispectral Optoelectronic Systems. Moscow, Russia: Logos, 2007, 192 p. (in Russian).

J.C. Leachtenauer and R.G. Driggers, Surveillance and Reconnaissance Systems: Modeling and Performance Prediction. Artech House, Incorporated, 2001, 419 p.

Definition of Nominal Static Ranger Performance for Thermal Imaging Systems, STANAG 4347, 1995.

A.R. Gluschenko et al., Tank Systems and Nightvision Devices. Cherkasy, Ukraine: Chabonenko Yu.A. Private Company, 2007, 442 p. (in Russian).

GOST Style Citations

  1. Тарасов М.М., Якушенков Ю.Г. Инфракрасные системы “смотрящего” типа. – М.: Логос, 2004. – 444 с.
  2. Сайт фірми FLIR. Опис стану техніки в індустрії [Електронний ресурс]. – Режим доступу: uploadedFiles/Thermography/MMC/Brochures/T820147/T820147_APAC.pdf
  3. Сайт фірми Raytheon. Сучасні тепловізійні технології [Електронний ресурс]. – Режим доступу: news/feature/rtn14_thermal.html
  4. Колобродов В.Г., Лихоліт М.І. Проектування тепловізійних і телевізійних систем спостереження. – К.: НТУУ “КПІ”, 2007. – 364 с.
  5. Мирошников М.М. Теоретические основы оптико-электронных приборов. – 2-е изд., перераб. и доп. – Л.: Машиностроение, 1983. – 696 с.
  6. Якушенков Ю.Г. Теория и расчет оптико-электронных приборов. – М.: Логос, 2004. – 472 с.
  7. Тарасов В.В., Якушенков Ю.Г. Двух- и многодиапазонные оптико-электронные системы. – М.: Логос, 2007. – 192 с.
  8. Leachtenauer J.C., Driggers R.G. Surveillance and Reconnaissance Systems: Modeling and Performance Prediction. – Artech House, Incorporated, 2001. – 419 p.
  9. STANAG 4347. Definition of nominal static ranger performance for thermal imaging systems, 1995.
  10. Танковые ночные системы и приборы наблюдения / А.Р. Глущенко, В.И. Гордиенко, А.В. Бурак, А.Ю. Денисенко. – Черкассы: ЧП Чабоненко Ю.А., 2007. – 442 с.



  • There are currently no refbacks.

Copyright (c) 2017 NTUU KPI