Reducing the concentration of Ca2+ Ions in Water Using Ultra- and Nanofiltration Ceramic Membranes

Тетяна Юріївна Дульнева

Abstract


The main regularities of processes of water purification from Ca2+ ions using ultra- and nanofiltration ceramic membranes, in particular, the influence of the operating pressure, the duration of the experiments, the concentrations of Ca2+ ions in the original solution and its temperature to reduce the content of these ions in the filtrate were identified. The cleaning process of the model solution CaCl2 was carried out on an experimental installation of baromembranes using ultra-and nanofiltration tubular membranes of ceramic oxide (produced in Germany). By the experimental results characteristics of ceramic membranes: retention coefficient R (%) of ions Ca2+ and specific productivity Jv (m3/(m2×h) of membrane were calculated. It has been established that on these results the processes of water purification from Ca2+ ions ultra- and nanofiltration ceramic membranes is advantageously carried out at a pressure of respectively 0,6 and 1,0 MPa. It was studied that for such membranes with increasing concentrations of Ca2+ accordingly to 90,0 and 120,0 mg/dm3 retention coefficient of these ions was reduced to 22,2 and to 83,33 %. And specific productivity membranes remained almost unchanged. Lowering the temperature of the feed solution CaCl2 resulted in a decrease in the specific productivity of the membrane, which is associated with a decrease in solution viscosity and without affecting the degree of its purification from Ca2+. It was concluded that studies have shown the high efficiency of water purification from Ca2+ using ceramic nanofiltration membranes compared with ultrafiltration. On the basis of obtained results, use of ceramic nanofiltration membranes in the first stage water softening, for example, prior to ion exchange to ensure boilers CHP, heating systems and boilers feeding was suggested.


Keywords


Ceramic membranes; Calcium; Ultrafiltration; Nanofiltration; Degree of purification; Specific productivity

References


Гончарук В.В. Наука о воде. – К.: Наук. думка, 2010. – 512 с.

Гончарук В.В. Концепция выбора перечня показателей и их нормативных значений для определения гигиенических требований и контроля за качеством питьевой воды в Украине // Хим. и технол. воды. – 2008. – Спец. выпуск, ч. II. – С. 52–111.

Первов А.Г. Современные высокоэффективные технологии очистки питьевой и технической воды с применением мембран: обратный осмос, нанофильтрация, ультрафильтрация. – М.: МГСУ, 2009. – 232 с.

Первов А.Г., Бондаренко В.И., Жабин Г.Г. Применение комбинированных систем обратного осмоса и ионного обмена для подготовки питательной воды паровых котлов // Энергосбер. и водоподготовка. – 2004. – № 5. – С. 25–28.

Экологические аспекты современных технологий охраны водной среды / Под ред. В.В. Гончарука. – К.: Наук. думка, 2005. – 400 с.

V.V. Goncharuk et al., “Watertreatment by baromembrane methods on ceramic membranes”, J. Water Chem. and Technol., vol. 31, no. 6, pp. 688–702, 2009.

Перспективы развития фундаментальных и прикладных исследований в области физики, химии и биологии воды / Под ред. В.В. Гончарука. – К.: Наук. думка, 2011. – 408 с.

Новиков Ю.В., Ласточкина К.О., Болдина З.Н. Методы исследования качества воды водоемов. – М.: Медицина, 1990. – 400 с.

T.Yu. Dulneva et al., “Сleaning of waste water from direct dyes by the ultra- and nanofiltration ceramic membranes”, J. Water Chem. and Technol., vol. 35, no. 4, pp. 298–306, 2013.

Кочаров Р.Г. Теоретические основы обратного осмоса. – М.: РХТУ им. Д.И. Менделеева, 2007. – 144 с.

Дытнерский Ю.И. Баромембранные процессы. Теория и расчеты. – М.: Химия, 1986. – 272 с.

F.A.G. Mattheus et al., “Effect of feed temperature and flow rate on permeate flux in spiral wound reverse osmosis systems”, Desalination, vol. 144, pp. 367–372, 2002.


GOST Style Citations


 

 





DOI: https://doi.org/10.20535/1810-0546.2014.3.55104

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 NTUU KPI