Calibration and correction method of the output signals of the triaxial accelerometer

Вадим Вікторович Аврутов, Сергій Володимирович Головач, Олександр Михайлович Сапегін, Максим Юрійович Хутко

Abstract


Background. Calibration is one of the most important stages of work for putting into operation such navigation sensors as accelerometers.

Objective. The aim of this study is to investigate the possibility of using the calibration and correction method of the output signals of the triaxial accelerometer.

Methods. To work with the model outputs matrix methods of linear algebra are used. In particular, determining the unknown parameters of the model is based on the method of least squares. Correction algorithm is given in the form of a matrix notation for solving system of linear equations. Such methods of mathematical statistics as the standard deviation and the mathematical expectation were used for the output signals correction estimation.

Results. Formulas for calculations of calibration parameters were obtained, and correction link for output accelerometer signals was developed. Experimental calibration was organized and the data obtained by the algorithm of calibration and correction link was processed. The results of studies for several test samples of triaxial accelerometers are presented.

Conclusions. Using the calibration coefficients, which combine error scale factors and non-orthogonal axes errors can significantly reduce the computational load on the electronic signals processing unit and make output signals with a satisfactory accuracy.

Keywords


Navigation sensors; Accelerometers; Calibration; Output signals correction; Allan variation

References


Metrology. Calibration of Measuring Instruments. Main Provisions, Organization, Procedure and Presentation of Results, Ukrainian Standard 3989–2000, 2000 (in Ukrainian).

V. Avrutov, “On scalar calibration of an inertial instrument cluster”, Innovations and Technologies New, vol. 2, no. 11, pp. 22–30, 2011.

V.V. Avrutov et al., “About scalar calibration for block of gyroscopes and accelerometers”, in Proc. 19th Saint Petersburg Int. Conf. Integrated Navigation Systems, St. Petersburg, Russia, 2012, pp. 113–118 (in Russian).

V. Avrutov and S. Golovach, “The scalar method of quality monitoring and diagnostics of the inertial measurement unit”, Visnyk NTUU “KPI”. Ser. Pryladobuduvannya, no. 48, pp. 14–20, 2014 (in Russian).

S.L. Lakoza and V.V. Meleshko, “Scalar Calibration of low and medium accuracy accelerometers”, Radiooptika, no. 1, pp. 9–28, 2015 (in Russian).

E.A. Izmaylov et al., “Scalar method of calibrating and balancing the strapdown inertial navigation systems”, in Proc. 15th Int. Conf. Integrated Navigation Systems, Saint Petersburg, 2008, pp. 145–154 (in Russian).

Yu.G. Egorov and H.N. Myint, “Synthesis of the programs for calibrating the accelerometers unit in the strapdown inertial navigation system”, Trudy FGUP “NPTsAP”. Sistemy i Pribory Upravleniya, no. 4, pp. 79–86, 2014 (in Russian).

E.A. Popov, “Calibration programs for accelerometer’s triad”, in Proc. 16th Conf. Navigation and Movement Control, St. Petersburg, Russia, 2014, no. 91. Available: http://www.elektropribor.spb.ru/kmu2014/progr.

Sheng-Chih Shen et al., “A new calibration method for low cost mems inertial sensor module”, J. Marine Sci. Technol., vol. 18, no. 6, pp. 819–824, 2010.

G. Panahandeh et al., “Calibration of the accelerometer triad of an inertial measurement unit, maximum likelihood estimation and cramer-rao bound”, in Proc. Int. Conf. Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 2010, pp. 1–6.

V. Avrutov, “Scalar method of fault diagnosis of inertial measurement unit”, Advances in Aerospace Eng., vol. 2015, Article ID 264564, 10 p., 2015.

V. Avrutov, “Scalar diagnostics of the inertial measurement unit”, Int. J. Intelligent Systems and Applications, vol. 11, pp. 1–9, 2015. Avaliable: http://www.mecs-press.org/ijisa/ijisa-v7-n11/IJISA-V7-N11-1.pdf

M. Chernyak and V. Palyushok, “The method of calibration triaxial accelerometer navigation unit on the uniaxial rotary table”, Mexanika Giroskopichnyx System, vol. 26, pp. 5–15, 2013 (in Ukrainian).

D. Allan, “Statistics of atomic frequency standards”, Proc. IEEE, vol. 54, no. 2, pp. 221–230, 1966.

A.-H. Walid, “Accuracy enhancement of integrated MEMS-IMU/GPS systems for land vehicular navigation applications”, Ph.D. Thesis, Department of Geomatics Engineering, University of Calgary, Canada, UCGE Report no. 20207, 2005.2005.

S.V. Golovach, “Experimental study of the laser gyroscope characteristics”, Visnyk NTUU “KPI”. Ser. Pryladobuduvannya, vol. 47, pp. 33–38, 2014 (in Russian).


GOST Style Citations


  1. Метрологія. Калібрування засобів вимірювальної техніки. Основні положення, організація, порядок проведення та оформлення результатів: ДСТУ 3989–2000. – Чинний від 25.09.2000. – К.: Держстандарт України, 2000. – 65 с.

  2. Avrutov V. On scalar calibration of an inertial instrument cluster // Innovations and Technologies New. – 2011. – 2, № 11. –  P. 22–30.

  3. Аврутов В.В., Головач С.В., Мазепа Т.Ю. О скалярной калибровке инерциального измерительного модуля // XIХ Санкт-Петербургская междунар. конф. по интегрированным навигационным системам: Сборник докладов. – СПб, 2012. – C. 113–118.

  4. Аврутов В.В., Головач С.В. Скалярный метод контроля и диагностики инерциально-измерительного модуля // Вісник НТУУ “КПІ”. Сер. Приладобудування. – 2014. – Вип. 48. – С. 14–20.

  5. Лакоза С.Л., Мелешко В.В. Скалярная калибровка акселерометров низкой и средней точности // Радиооптика. – 2015. – № 1. – С. 9–28.

  6. Скалярный способ калибровки и балансировки бесплатформенных инерциальных навигационных систем / Е.А. Измайлов, С.Н. Лепе, А.В. Молчанов, Е.Ф. Поликовский // XV Междунар. конф. по интегрированным навигационным системам: Сборник докладов. – СПб. 2008. – С. 145–154.

  7. Егоров Ю.Г., Мьинт Х.Н. Синтез программ калибровки блока акселерометров бесплатформенной инерциальной навигационной системы // Труды ФГУП НПЦАП. Системы и приборы управления. – 2014. – № 4. – С. 79–86.

  8. Попов Е.А. Программы калибровки триады акселерометров // XVI Конф. молодых ученых “Навигация и управление движением”: Тез. докл., 11–14 марта 2014 г., СПб. – СПб., 2014. – Докл. № 91. – Режим доступа: http://www.elektropribor.spb.ru/kmu2014/progr.

  9. Sheng-Chih Shen, Chia-Jung Chen, Hsin-Jung Huang. A new calibration method for low cost mems inertial sensor module // J. Marine Sci. Technol. – 2010. – 18, № 6. – P. 819–824.

  10. Panahandeh G., Skog I., Jansson M. Calibration of the accelerometer triad of an inertial measurement unit, maximum likelihood estimation and cramer-rao bound // Int. Conf. Indoor Positioning and Indoor Navigation, Sept. 15–17, 2010, Zurich, Switzerland. ­– P. 1–6.

  11. Avrutov V. Scalar method of fault diagnosis of inertial measurement unit // Advances in Aerospace Eng. – 2015. – 2015, article ID 264564. – 10 p.

  12. Avrutov V. Scalar diagnostics of the inertial measurement unit // Int. J. Intelligent Systems and Applications. – 2015. – 11. – P. 1–9. ­– Avaliable: http://www.mecs-press.org/ijisa/ijisa-v7-n11/IJISA-V7-N11-1.pdf

  13. Черняк М., Палюшок В. Спосіб калібрування тривісного блока навігаційних акселерометрів на одновісному поворотному стенді // Механіка гіроскопічних систем. – 2013. – Вип. 26. – С. 5–15.

  14. Allan D. Statistics of atomic frequency standards // Proc. IEEE. – 1966. – 54, № 2. – P. 221–230.

  15. Walid A.-H. Accuracy enhancement of integrated MEMS–IMU/GPS systems for land vehicular navigation applications: Ph.D. Thesis, Department of Geomatics Engineering, University of Calgary, Canada, UCGE Report no. 20207, 2005.

  16. Головач С.В. Експериментальне дослідження характеристик лазерного гіроскопа // Вісник НТУУ “КПІ”. Сер. Приладобудування. – 2014. – Вип. 47. – С. 33–38.




DOI: https://doi.org/10.20535/1810-0546.2016.1.52999

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 NTUU KPI