Effect of Microwave Sintering Temperature on Structure and Mechanical Properties of Hydroxyapatite Ceramics

Authors

  • Ганна Богданівна Товстоног NTUU “KPI”, Ukraine
  • Олена Євгенівна Сич Frantsevich Institute for Problems of Materials Science of the NASU, Ukraine
  • Валерій Володимирович Скороход Frantsevich Institute for Problems of Materials Science of the NASU, Ukraine

DOI:

https://doi.org/10.20535/1810-0546.2014.2.52349

Keywords:

Biomaterial, Calcium phosphate, Hydroxyapatite, Microwave sintering

Abstract

The aim of the paper was to investigate features of microwave sintering of biogenic hydroxyapatite obtained for filling of various bone defects in medicine. The samples were prepared at high-temperature muffle furnace (1,5 kW, 2,45 GHz) at 800, 900, 1000 and 1100 °С. It was established that increasing of microwave sintering temperature did not lead to a rapid increasing of grain size and agglomerate formation. The prepared materials have homogeneous fine-grained structure with average grain size 0,42–0,56 мm and average pore size is equal to 0,5 мm. It was established that the porosity of materials prepared at 800–1000 °С was equal to 40 % and for materials prepared at 1100 °С reduced down to 33 %. The compressive strength increased from 31 to 59 MPa with increasing of temperature and was close to that of cancellous human bone. Studies in vіtro showed that the solubility of the materials in physiological solution did not depend on sintering temperature and was equal to 0,1–0,15 wt. %/day. Thus, the possibility of preparation of ceramics based on biogenic hydroxyapatite by microwave sintering at 800–1100 °C with sufficient structural-mechanical properties for medical use for the substitution of bone defects was shown in the present work.

Author Biographies

Ганна Богданівна Товстоног, NTUU “KPI”

Tovstonoh Hanna,

postgraduate student

Олена Євгенівна Сич, Frantsevich Institute for Problems of Materials Science of the NASU

Sych Olena,
Ph.D, senior scientist

Валерій Володимирович Скороход, Frantsevich Institute for Problems of Materials Science of the NASU

Skorokhod Valery,                                                       academician, doctor of technical sciences, full professor, director of the Frantsevich Institute for Problems of Materials Science of the NASU

References

Распространенность переломов костей и результаты их лечения в Украине (клинико-эпидемиологическое исследование) / Н.А. Корж, С.И. Герасименко, В.Г. Климовицкий и др. // Ортопедия, травматология и протезирование. – 2010. – № 3. – С. 5–14.

Путляев В.И. Современные биокерамические материалы // Соросовский образовательный журнал. – 8, № 1. – 2004. – С. 44–50.

Механохимический синтез гидроксиапатита с замещениями для нанесения покрытий на медицинские имплантаты методом высокочастотного магнетронного распыления / М.В. Чайкина, В.Ф. Пичугин, М.А. Сурменева, Р.А. Сурменев // Химия в интересах устойчивого развития. – 2009. – 17. – С. 513–520.

C. Guzm’an V’azquez et al., “Stoichiometric hydroxyapatite obtained by precipitation and sol gel processes”, Revista mexicana de f ’isica, vol. 51, no. 3, рр. 284–293, 2005.

A. Raksujarit et al., “Processing and properties of nano¬porous hydroxyapatite ceramics”, Materials and Design, vol. 31, рр. 1658–1660, 2010.

Y. Gao et al., “Characterization and osteoblast-like cell compatibility of porous scaffolds: bovine hydroxyapatite and novel hydroxyapatite artificial bone”, J. Mater. Sci.: Mater. Med., vol. 17, рр. 815–823, 2006.

Growth and morphogenesis of the skeletal bones after implantations biological hidroxyapatite ОК-015 in the tibia / V.V. Stry, R.V. Vereskun, V.N. Prochan, B.S. Rudoy // Укр. мед. альманах. – 2009. – 12, № 1. – С. 35–36.

A.S. Fomin et al., “Nanocrystalline hydroxyapatite ceramics produced by low-temperature sintering after high-pres-sure treatment”, Doklady Chem., vol. 418, no. 1, рр. 22–25, 2008.

Y. Zhang et al., “Effects of gelatin addition on the microstructure of freeze-cast porous hydroxyapatite ceramics”, Ceramics Int., vol. 35, no. 6, pp. 2151–2154, 2009.

C. Drouet et al., “Nanocrystalline apatites: From powders to biomaterials”, Powder Technol., vol. 190, no. 1-2, pp. 118–122, 2009.

A. Farzadi et al., “Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation”, Ceramics Int., vol. 37, no. 1, pp. 65–71, 2011.

N. Iqbal et al., “Rapid microwave assisted synthesis and characterization of nanosized silver-doped hydroxyapatite with antibacterial properties”, Mater. Letters, vol. 85, pp. 118–122, 2012.

S.J. Kalita and S. Verma, “Nanocrystalline hydroxyapatite bioceramic using microwave radiation: Synthesis and characterization”, Mater. Sci. Eng., ser. C, vol. 30, no. 2, pp. 295–303, 2010.

O. Sych and N. Pinchuk, “Effect of type of calcium phosphate on microstructure and properties of glass reinforced biocomposites”, Processing and Application of Ceramics, vol. 1, is. 1-2, pp. 1–4, 2007.

F.N. Oktar, “Microstructure and mechanical properties of sintered enamel hydroxyapatite”, Ceramics Int., vol. 33, pp. 1309–1314, 2007.

Ноздрюхина Л.Р., Семенович Н.И., Юренев П.Н. Иммунопатология. Микроэлементы. Атеросклероз. – М.: Наука, 1973. – 356 с.

Судья Д.А., Ластков Д.О. Проблема токсического действия солей стабильного стронция на организм (обзор литературы) // Сучасні проблеми токсикології, харчової та хімічної безпеки. – 2013. – № 3. – С. 55–60.

G. Renaudin et al., “Structural characterization of sol-gel derived Sr-substituted calcium phosphates with anti-osteoporotic and anti-inflammatory properties”, J. Mater. Chem., vol 18, pp. 3593–3600, 2008.

S.A. Goldstein, “The mechanical properties of trabecular bone: dependence on anatomic location and function”, J. Biomechanics, vol. 20, no. 11-12, pp. 1055–1061, 1987.

Published

2014-04-29

Issue

Section

Art