Alignment of Inertial Navigation System Using PID-Control




Inertial navigation system, Gyroscope, Accelerometer, Gyrostabilized platform, Alignment, Gyrocompassing, PID-control


Background. Alignment of inertial navigation system has vital importance to inertial navigation system, because precision navigation depends on the process time and alignment error.

Objective. The purpose of our paper is to research possibility to use PID-control for initial alignment of inertial navigation system. Two alignment modes – leveling and gyrocompassing of platform are discussed.

Methods. Literature review on alignment and state of problem are considered in the first part – introduction. The second part of the paper presents details of standard gyrostabilized platform leveling by scheme “accelerometer–gyroscope–platform”. In the third part a possibility to use PID-control for coarse leveling by “accelerometer–platform” scheme is discussed. Gyrocompassing mode is the subject of the last fourth part.

Results. Calculation formulas for determining the coefficients of the PID control, dynamic and precision characteristics of gyrocompassing mode for gyroscope proportional control law are obtained. The results of computational modeling of the process of leveling for multiple selection criteria of the coefficients of the PID-control are brought.

Conclusions. It is concluded that using of standard Butterworth forms and integral criterion of minimum weighted  error module allows us to bring and provide the necessary precision. Using the PID-control for the coarse leveling mode ensures the necessary control process quality.

Author Biographies

Вадим Вікторович Аврутов, NTUU “KPI”

Vadym V. Avrutov,

candidate of technical sci., associate professor at the Navigation Instruments & Spacecraft Systems Dept.

Зеновій Степанович Стефанишин, NTUU “KPI”

Zenoviy S. Stefanishin,

bachelor’s degree, undergraduate at the Navigation Instruments & Spacecraft Systems Dept.


A.H. Lipton, Alignment of Inertial Systems on a Moving Base.WashingtonD.C.: NASA, 1967, 178 p.

D.S. Pelpor, Gyroscopic Systems. Gyro Instruments and Systems. Мoscow, USSR: Vyshaya Shkola, 1988, 424. (in Russian).

V.V. Meleshko, Inertial Navigation Systems. Initial Alignment. Kyiv, Ukraine: Korneychuk, 1999, 126 p. (in Russian).

V.Z. Gusinskiy et al., “Alignment and calibration of inertial navigation system with multidimensional error model of inertial sensors”, in 4th Int. Conf. Integrated Navigation Systems,St. Petersburg,Russia: State Research Center Elektropribor, 1997, pp. 27–41 (in Russian).

S.P. Dmitriyev et al., “Nonlinear filtering methods: application in INS alignment”, IEEE Trans. Aerospace Electronic Systems, vol. 33, no. 1, 1997, pp. 260–271.

V.V. Kovalenko, Compact Inertial System: Teaching Aid.Cheliabinsk,Russia, 2010, 53 p. (in Russian).

D.H. Titterton and J.L. Weston, Strapdown Inertial Navigation Technology (IEE Radar, Sonar, Navigation and Avionics, Ser. 17).Stevenage: Institution of Electrical Engineers 2004, 558 p.

A. Jamshaid and J. Fang. Alignment of Strapdown Inertial Navigation System: A Literature Survey Spanned Over the Last 14 Years [Online]. Avaliable:­manlib/StrapdownAlignment.pdf

J.G.Parket al., “The enhancement of INS alignment using GPS measurements”, IEEE Position Location and Navigation Symposium, 1998, pp. 534–540.

D. Yang et al., “Performance enhancement of large-ship transfer alignment: a moving horizon approach”, J. Navigation, 66, pp. 17–33, 2013.

M. Wu et al., “Optimization-based alignment for inertial navigation systems: Theory and algorithm”, Aerospace Sci. Technol., vol. 15, pp. 1–17, 2011.

S. Han and J. Wang, “A novel initial alignment scheme for low-cost INS aided by GPS for land vehicle applications”, J. Navigation, vol. 63, pp. 663–680, 2010.

Y. Tang et al., “INS/GPS integration: global observability analysis”, IEEE Trans. Vehicular Technol., vol. 58, pp. 1129–1142, 2009.

S. Hong et al., “Observability measures and their application to GPS/INS”, IEEE Trans. Vehicular Technol., vol. 57, pp. 97–106, 2008.

R.C. Dorf and R.H. Bishop, Modern Control Systems.Moscow,USSR: Laboratorija Bazovyh Znanij, 2004, 832 p. (in Russian).

N.T. Kuzovkov, Modal Control and Observers. Moscow, USSR: Mashinostroenie, 1976, 184 p. (in Russian).