Alignment of Inertial Navigation System Using PID-Control

Вадим Вікторович Аврутов, Зеновій Степанович Стефанишин

Abstract


Background. Alignment of inertial navigation system has vital importance to inertial navigation system, because precision navigation depends on the process time and alignment error.

Objective. The purpose of our paper is to research possibility to use PID-control for initial alignment of inertial navigation system. Two alignment modes – leveling and gyrocompassing of platform are discussed.

Methods. Literature review on alignment and state of problem are considered in the first part – introduction. The second part of the paper presents details of standard gyrostabilized platform leveling by scheme “accelerometer–gyroscope–platform”. In the third part a possibility to use PID-control for coarse leveling by “accelerometer–platform” scheme is discussed. Gyrocompassing mode is the subject of the last fourth part.

Results. Calculation formulas for determining the coefficients of the PID control, dynamic and precision characteristics of gyrocompassing mode for gyroscope proportional control law are obtained. The results of computational modeling of the process of leveling for multiple selection criteria of the coefficients of the PID-control are brought.

Conclusions. It is concluded that using of standard Butterworth forms and integral criterion of minimum weighted  error module allows us to bring and provide the necessary precision. Using the PID-control for the coarse leveling mode ensures the necessary control process quality.


Keywords


Inertial navigation system; Gyroscope; Accelerometer; Gyrostabilized platform; Alignment; Gyrocompassing; PID-control

References


A.H. Lipton, Alignment of Inertial Systems on a Moving Base.WashingtonD.C.: NASA, 1967, 178 p.

D.S. Pelpor, Gyroscopic Systems. Gyro Instruments and Systems. Мoscow, USSR: Vyshaya Shkola, 1988, 424. (in Russian).

V.V. Meleshko, Inertial Navigation Systems. Initial Alignment. Kyiv, Ukraine: Korneychuk, 1999, 126 p. (in Russian).

V.Z. Gusinskiy et al., “Alignment and calibration of inertial navigation system with multidimensional error model of inertial sensors”, in 4th Int. Conf. Integrated Navigation Systems,St. Petersburg,Russia: State Research Center Elektropribor, 1997, pp. 27–41 (in Russian).

S.P. Dmitriyev et al., “Nonlinear filtering methods: application in INS alignment”, IEEE Trans. Aerospace Electronic Systems, vol. 33, no. 1, 1997, pp. 260–271.

V.V. Kovalenko, Compact Inertial System: Teaching Aid.Cheliabinsk,Russia, 2010, 53 p. (in Russian).

D.H. Titterton and J.L. Weston, Strapdown Inertial Navigation Technology (IEE Radar, Sonar, Navigation and Avionics, Ser. 17).Stevenage: Institution of Electrical Engineers 2004, 558 p.

A. Jamshaid and J. Fang. Alignment of Strapdown Inertial Navigation System: A Literature Survey Spanned Over the Last 14 Years [Online]. Avaliable: ftp://labattmot.ele.ita.br/ele/alessandro/Leitura/04%20-%20PAPERS/ARTIGOS/KALMAN/kal­manlib/StrapdownAlignment.pdf

J.G.Parket al., “The enhancement of INS alignment using GPS measurements”, IEEE Position Location and Navigation Symposium, 1998, pp. 534–540.

D. Yang et al., “Performance enhancement of large-ship transfer alignment: a moving horizon approach”, J. Navigation, 66, pp. 17–33, 2013.

M. Wu et al., “Optimization-based alignment for inertial navigation systems: Theory and algorithm”, Aerospace Sci. Technol., vol. 15, pp. 1–17, 2011.

S. Han and J. Wang, “A novel initial alignment scheme for low-cost INS aided by GPS for land vehicle applications”, J. Navigation, vol. 63, pp. 663–680, 2010.

Y. Tang et al., “INS/GPS integration: global observability analysis”, IEEE Trans. Vehicular Technol., vol. 58, pp. 1129–1142, 2009.

S. Hong et al., “Observability measures and their application to GPS/INS”, IEEE Trans. Vehicular Technol., vol. 57, pp. 97–106, 2008.

R.C. Dorf and R.H. Bishop, Modern Control Systems.Moscow,USSR: Laboratorija Bazovyh Znanij, 2004, 832 p. (in Russian).

N.T. Kuzovkov, Modal Control and Observers. Moscow, USSR: Mashinostroenie, 1976, 184 p. (in Russian).


GOST Style Citations


  1. Lipton A.H. Alignment of Inertial Systems on a Moving Base. – WashingtonD.C.: NASA, 1967. – 178 с.

  2. Пельпор Д.С. Гироскопические системы. Гироскопические приборы и системы / Под ред. Д.С. Пельпора. – М.: Высшая школа, 1988. – 424 с.

  3. Мелешко В.В. Инерциальные навигационные системы. Начальная выставка. – К.: Корнейчук, 1999. – 126 с.

  4. Гусинский В.З., Лесючевский В.М., Литманович Ю.А. Выставка и калибровка инерциальной навигационной системы  с многомерной моделью погрешности инерциальных измерителей // IV Междунар. конф. по интегрированным навигационным системам. – СПб.: ЦНИИ “Электроприбор”, 1997. – C. 27–41.

  5. Dmitriyev S.P., Stepanov O.A., Shepel S.V. Nonlinear filtering methods: application in INS alignment // IEEE Trans. Aerospace Electronic Systems. –1997. – 33, № 1. – P. 260–271.

  6. Коваленко В.В., Лысов А.Н. Малогабаритная инерциальная система: Учебн. пособие. – Челябинск, 2010. – 53 с.

  7. Titterton D.H., Weston J.L. Strapdown Inertial Navigation Technology (IEE Radar, Sonar, Navigation and Avionics, Ser. 17). – Stevenage: Institution of Electrical Engineers, 2004. – 558 с.

  8. Jamshaid A., Fang J. Alignment of Strapdown Inertial Navigation System: A Literature Survey Spanned Over the Last 14 Years [Online]. – Avaliable: ftp://labattmot.ele.ita.br/ele/alessandro/Leitura/04%20-%20PAPERS/ARTIGOS/KALMAN/kal­-manlib/ StrapdownAlignment.pdf

  9. The Enhancement of INS Alignment Using GPS Measurements /J.G.Park,C.G.Park, G. Jee, J.T. Oh // IEEE Position Location and Navigation Symposium. ­– 1998. – P. 534–540.

  10. Performance enhancement of large-ship transfer alignment: a moving horizon approach / D. Yang, S. Wang, H. Li et al. // J. Navigation. –2013. – 66. – P. 17–33.

  11. Optimization-based alignment for inertial navigation systems: theory and algorithm / M. Wu, Y. Wu, Xi. Hu, D. Hu // Aero­-space Sci. Technol. – 2011. – 15. – P. 1–17.
  12. Han S., Wang J. A novel initial alignment scheme for low-cost INS aided by GPS for land vehicle applications // J. Navigation. – 2010. – 63. – P. 663–680.

  13. INS/GPS integration: global observability analysis / Y. Tang, Y. Wu, M. Wu et al. // IEEE Trans. Vehicular Technol. – 2009. – 58. – P. 1129–1142.

  14. Observability measures and their application to GPS/INS / Sinpyo Hong, Ho-Hwan Chun, Sun-Hong Kwon, Man Hyung Lee // IEEE Trans. Vehicular Technol. – 2008. – 57. – P. 97–106.

  15. Дорф Р., Бишоп Р. Современные системы управления. – М.: Лаборатория Базовых Знаний, 2004. – 832 с.

  16. Кузовков Н.Т. Модальное управление и наблюдающие устройства. – М.: Машиностроение, 1976. – 184 с.




DOI: http://dx.doi.org/10.20535/1810-0546.2015.5.51602

Refbacks

  • There are currently no refbacks.