Precisely Soluble Model of the Parametrical Resonance

Віктор Григорович Бар'яхтар, Ганна Володимирівна Самар

Abstract


Background. Construction of the exactly solvable model of the parametric resonance with the solutions in analytical form. The study of the parametric resonance basic properties in the exactly solvable model in case that the periodic potential of the Hill equation is the Lame potential.

Objective. Using of the Lame one-dimensional finite-zone potentials for calculating of the parametric resonance parameters.

Methods. To achieve this purpose the methods of theoretical physics, the methods of the elliptic functions theory for use of the finite-zone potentials, the weak- and strong-binding approximations for studying of the limit cases of finite-zone potential are used.

Results. The study of exactly solvable models in case that the periodic potential of the Hill equation is the Lame potential proportional to the elliptic Weierstrass function is performed. These potentials correspond to a spectrum that consists of a finite number of zones. Zone approach for the analysis of the effect of parametric resonance is developed. The increments of growth of oscillations in the Lame potential model for external force applied to the oscillator are calculated. It is shown that the increment of growth reaches a maximum in the middle of zone (parametric resonance condition) and that derivatives of the increment of growth with respect to the natural frequency tend to infinity on the zone boundaries. This result corresponds to a conversion to infinity of derivatives of quasifrequency with respect to the natural frequency in case of the parametric oscillator fluctuations with constrained amplitude.

Conclusions. The Lame potential model gives an opportunity to explore the dependence of the increment of growth on the intensity of external influence in case that the weak- and strong-binding approximations are modulated by the potential periods.


Keywords


Parametric resonance; Increments of parametric oscillation; Lame potentials; Exactly solvable model; Elliptic Weierstrass functions

References


I. Bloch et al., “Many-body physics with ultracold gases”, Rev. Mod. Phys, no. 80, p. 885, 2008. DOI: 10.1103/RevModPhys.80.

E.G. Galkina et al., “Dynamics of antiferromagnets exposed to ultrashort magnetic field pulses”, Pis’ma v ZETF, vol. 93, no. 12, pp. 792–796, 2011 (in Russian).

V.G. Baryakhtar et al., “A general method for solution of some problems of motion stabilization and destabilization”, in II Int. Conf. Quantum Electrodyn. Stat. Phys., Kharkiv, Ukraine, September 19–23, 2006, p. 179.

L.I. Mandel'shtam, “Lectures on oscillationsс”, in Complete Set of Works, vol. 4.Moscow,USSR: AN SSSR, 1955, 511 p. (in Russian).

A.A. Andronov et al., Vibration Theory.Moscow,USSR: Nauka, 1981, 918 p. (in Russian).

E.D. Courant and H.S. Snyder, “Theory of alternating – gradient synchrotron”, Ann. Phys., vol. 3, pp.1–123, 1958.

V.G. Baryakhtar et al., “A new method for calculating the electron spectrum of solids. Application to high-temperature superconductivity”, Phys. Stat. Sol. (b), vol. 169, pp. 105–114, 1992.

E.D. Belokolos, Mathematical Foundations of the Theory of Solids with a Quasi-Periodic Structure.Kyiv,USSR: ITF ANUSSR,1982 (in Russian).

E.D. Belokolos and V.Z. Enolskii, “Reduction of Abelian functions and Algebraically integrable systems”, J. Math. Sci., vol. 106, no. 6, pp. 3395–3486, 2001; Ibid, vol. 108, no. 3, pp. 295–374 (2002).

A.V. Turbiner, “Quasi-exactly-solvable problems and sl(2) algebra”, Comm. Math. Phys., vol. 118, pp. 467–474, 1988.

F. Correa et al., Hidden nonlinear supersymmetry of finite-gap Lame equation [Online]. Avaliable: arXiv:hep-th/0608096v2. DOI: 10.1016/j.physletb.2006.11.02.

E.D. Belokolos, “Spectra of the schrodinger operators with finite-gap potentials and integrable systems”, Proc. Institute of Mathematics of NAS of Ukraine, vol. 43, part I, pp. 273–280, 2002.

V.G. Baryakhtar et al., “On the electron motion theory in a crystal”, Naukovi Visti NTUU KPI, no. 4, pp. 7–13, 2006 (in Ukrainian).

I.M. Lifshic et al., Electron Theory of Metals.Moscow,USSR: Nauka, 1971, 415 p. (in Russian).

E.T. Uitteker and G.N. Vatson, А Course of Modern Analysis. Moscow: USSR , vol. 2, 2002, 515 p. (in Russian).


GOST Style Citations


  1. Bloch I., Dalibard J., Zwerger W. Many-body physics with ultracold gases // Rev. Mod. Phys. – 2008. – 80. – Р. 885. DOI: 10.1103/RevModPhys.80.885.

  2. Галкина Е.Г., Михайлов И.Ю., Иванов Б.А. Динамическая спиновая переориентация в ортоферритах под действием лазерного импульса // Письма в ЖЭТФ. – 2011. – 93, № 12. – С. 792–796.

  3. Baryakhtar V.G., Belokolos E.D., Samar G.V. A general method for solution of some problems of motion stabilization and destabilization // II Int. Conf. Quantum Electrodyn. Stat. Phys. Kharkov, September 19–23, 2006. – Kharkov, 2006. – P. 179.

  4. Мандельштам Л.И. Лекции по колебаниям // Полное собрание трудов. – М.: Изд. АН СССР, 1955. – 4. – С. 511.

  5. Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. – М.: Наука, 1981 – 918 c.

  6. Courant E.D., Snyder H.S. Theory of alternating – gradient synchrotron // Ann. Phys. – 1958 – 3. – Р. 1–123.

  7. Baryakhtar V.G., Belokolos E.D., Korostil A.M. A new method for calculating the electron spectrum of solids. Application to high-temperature superconductivity // Phys. Stat. Sol. (b). – 1992. – 169. – Р. 105–114.

  8. Белоколос Е.Д. Математические основы теории твердых тел с квазипериодической структурой. – К.,1982. – 27 с. – (Препринт /АН УССР, Ин-т теор. физики).

  9. Belokolos E.D., Enolskii V.Z. Reduction of Abelian functions and Algebraically integrable systems // J. Math. Sci. – 2001. – 106, № 6. – p. 3395–3486; Ibid. – 2002. – 108, № 3. – P. 295–374.

  10. Turbiner A.V. Quasi-exactly-solvable problems and sl(2) algebra // Comm. Math. Phys. – 1988. – 118. – P. 467–474.

  11. Correa F., Nieto L.M., Plyushchay M.S. Hidden nonlinear supersymmetry of finite-gap Lame equation. – 2006. – Avaliable: arXiv:hep-th/0608096v2. DOI: 10.1016/j.physletb.2006.11.02.

  12. Belokolos E.D. Spectra of the Schrodinger Operators with Finite-Gap Potentials and Integrable Systems // Proc. Institute of Mathematics of NAS of Ukraine. – 2002. – 43, partI. – Р. 273–280.

  13. До теорії руху електрона в кристалі / В.Г. Бар’яхтар, Є.Д. Білоколос, Г.В. Самар, О.В. Дмитрієв // Наукові вісті НТУУ “КПІ”. – 2006. – № 4. – С. 7–13.

  14. Лифшиц И.М., Азбель М.Я., Каганов М.И. Электронная теория металлов. – М.: Наука, 1971. – 415 с.

  15. Уиттекер Э.Т., Ватсон Дж. Н. Курс современного анализа / Пер. с англ.; под ред. Ф.В. Широкова. – М.: УРСС, 2002. – Т. 2. – 515 с.




DOI: https://doi.org/10.20535/1810-0546.2015.4.50335

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 NTUU KPI