Model of Plane Distribution of Heat Sources for Multi-Channel Matrix Oxygen Sensors

Віталій Йосипович Котовський, Юрій Іванович Джежеря, Олександр Петрович Довженко, Артем Миколайович Грищук

Abstract


Transcutaneous polarography is one of the most objective noninvasive assessment of the capillary blood flow and microcirculation by controlling the oxygen partial pressure in the subcutaneous tissue. The outcome of research is influenced by such common factors as the oxygen content in the ambient air, the adequacy of the central hemodynamics of the patient, the presence of violations of the transport function of the blood, the pathology of the pulmonary system and local factors (disturbance of the local microcirculation, tissue edema, marked capillary spasm, etc.). For research purposes single-channel analyzers are generally used. Increasing the informative value of biomedical research is possible due to the use multi-channel raster array of oxygen sensors as a primary sensor. The use of such matrices will provide information about the in vivo distribution of the partial pressure of oxygen from the surface of the human skin, to more complete assess of its functional state and dynamics to control the impact of possible therapeutic interventions. The paper analyzes the influence of heat sources on the distribution of temperature field of multi-channel raster array of oxygen sensors as the main component of its operation and determines the optimum configuration of such sources.


Keywords


Partial pressure of oxygen; Transcutaneous sensor; Matrix oxygen sensors

References


Березовский В.А. Напряжение кислорода в тканях животных и человека. – К.: Наук. думка, 1975. – 280 с.

Патент UA №58119, А61В5/146. Транскутанний елек­трохімічний датчик парціального тиску кисню в крові / Афанасьєва В.П., Мошківська Н.М., Ройтман Ю.М., Осауленко В.А. – Заявл. 04.10.2002; Опубл. 15.07.2003, Бюл. № 7.

C.D. Jhonson and D.W. Paul, “In situ calibrated oxygen electrode”, Sensors and actuators B., vol. 105, no. 2, pp. 322–328, 2005.

M. Wittkampf et al., “Silicon thin film sensor for measurement of dissolved oxygen”, Ibid, vol. 43, no. 1-3, pp. 40–44, 1997.

C.-C. Wu et al., “Fabrication of miniature Clark oxygen sensor integrated with microstructure”, Ibid, vol. 110, pp. 342–349, 2005.

Лежнев Э.И., Попов И.И., Лавровская В.П. Коррекция погрешности автопотребления кислородного электрода Кларка // Научн. приборост. – 2008. – 18, № 1. – С. 76–81.

Каталог медичної продукції за 2009 рік. – Режим доступу: http://www.rosmed.ru/

Рекламні проспекти 2010. – Режим доступу: http: // www.basko.spb.ru

Котовский В.И., Довженко А.П., Рой В.В. Особенности разработки транскутанной сенсорной ячейки для задач многоканальной кислородометрии // Электроника и связь. Темат. вып. Электрон. и нанотехн. – 2009. – 2, № 4-5. – С. 236–240.

Котовський В.Й., Осауленко В.Л. Розробка пристрою для дослідження газообмінних процесів біологічних об’єктів // Вісник НТУУ “КПІ”. Сер. Приладобуд. – 2010. – Вип. 39. – С. 149–156.

Котовський В.Й. Визначення характеру нестабільності сенсорів кисню // Актуальные вопр. теорет. и прикл. биофиз., физ. и хим.: VI научно-техн. конф., БФФХ–2010: тез. докл. – Севастополь, 2010. – 2. – С. 215–217.

Владимиров В.С. Уравнения математической физики. – М.: Наука, 1988. – 512 с.


GOST Style Citations


 

 





DOI: http://dx.doi.org/10.20535/1810-0546.2014.5.34600

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 NTUU KPI