Minimal Systems of Generators and Relations and Properties of Wreath Products of Perfect Groups

Authors

  • Руслан Вячеславович Скуратовський Taras Shevchenko National University of Kyiv, Ukraine

DOI:

https://doi.org/10.20535/1810-0546.2014.4.28406

Keywords:

Minimal system of generators, Wreath product, Metaperfectgroup, Group

Abstract

Generators and defining relations for wreath products of perfect group which is two generating and alternating groups \[A_{n_1}\imath A_{n_2}\imath ...\imath A_{n_m},\] (m > 2  times) are given. System of generators of metaperfect groups are found. Generators and defining relations for wreath products of 2-generating perfect groups were found, including alternating groups, i.e.  \[A_{n_1}\imath A_{n_2}\imath ...\imath A_{n_m},\] (m > 2  time). Systems of generators for metaperfect groups were investigated. A constructive proof of the minimality found system of generators was presented. It is shown that metaperfect group is not locally finite group. Cases of wreath product \[G\imath \mathit{D}\]  of metaperfect group D with group (GX), which may be such that acts as a transitive and intransitive, construct the corresponding systems of generators. Presented generalization is the appearance of the product of different perfect groups \[H_{i}\] and finding the exact value \[d_{n}^{wr}(H_{i})\]  instead of the estimate. As it was found, for perfect 2-generator groups, wich has conditions founded by us, satisfy the equality of lower estimate \[d_{n}^{wr}(H_{i})=d(H_{i})=2,\] it was easily generalized for 3-generated groups as \[d_{n}^{wr}(H_{i})=3.\]. It was found, that some of the properties immanent alternating groups are saved for metaalternating groups. The criterion of perfectly for metaalternating group was obtained. Inverse limit of metaalternating group, which іs proved to be branch group that does not own the property of locally finiteness was analyzed.

 

Author Biography

Руслан Вячеславович Скуратовський, Taras Shevchenko National University of Kyiv

junior research fellow at the Taras Shevchenko National University of Kyiv 

References

M. Bhattacharjee, “The probability of generating certain profinite groups by two elements”, Israel J. Math., no. 86, pp. 311–329, 1994.

M. Quick, “Probabilistic generation of wreath products of non-Abelian finite simple groups”, Commun. Algebra, no. 32 (12), pp. 4753–4768, 2004.

M. Quick, “Probabilistic generation of wreath products of non-Abelian finite simple groups. II”, Int. J. Algebra Comput., no. 16(3), pp. 493–503, 2006.

Заводя М.В., Сiкора В.С., Сущанський В.I. Двухеле­мент­ні системи твірних метазнакозмінних груп скін­ченного рангу // Мат. cтудiї. – 2010. – 34, № 1. – С. 3–12.

Олiйник Б.В., Сiкора В.С., Сущанський В.I. Метасимметрические и метазнакопеременные группы бесконечного ранга // Мат. студiї. – 2008. – 29, № 2. – С. 139–150.

I.V. Bondarenko, “Finite generation of iterated wreath products”, Archiv der Mathematik, vol. 95, is. 4, pp. 301–308, 2010.

R.D. Karmichael, “Abstract definitions of the symmetric and alternating groups and certain other permutation groups”, Quart. J. Math., vol. 49, pp. 226–270, 1923.

Сікора В.С., Сущанський В.І. Операції на групах підстановок. – Чернівці: Рута, 2003. – 256 с.

Сущанский В.И. Нормальное строение группы изометрий метрического пространства целых p-адичес­ких чисел. Алгебраические структуры и их применение. – К.: КГУ, 1988 – С. 113–121.

R. Grigorchuk and I. Pak, Groups of Intermediate Growth: an Introduction for Beginners. Preprint [Online]. Avaliable: http://arxiv.org/pdf/math/0607384.pdf

W.M. Kantor, “Some Сayley graphs for simple groups”, Discrete Applies Mathematics, vol. 25, pp. 99–104, 1989.

H. Wielandt, Finite permutations Groups. New York–London: Academic Press, 1968. – 108 p.

D. Segal, “The finite images of finitely generated groups”, Proc. Lond. Math. Soc., III. Ser., vol. 82(3), pp. 597–613, 2001.

J. Wiegold, “Growth sequences of finite groups 3”, J. Austral. Math. Soc., vol. 25, pp. 142–144, 1978.

Калужнин Л.А. Об одном обобщении силовских р-подгрупп симметрических групп // Acta Math. Hung. – 1951. – 2, № 3-4. – Р. 198–221.

R. Grigorchuk and Z. Sunic, “Self-similarity and branching in group theory”, Math. Res. Notices, p. 54, 1998.

L. Bartholdi et al., “Branch groups”, Math. Res. Notices, 2005, p. 112.

Published

2014-08-21