Integral Transforms with the r-Hypergeometric Functions

Ніна Опанасівна Вірченко, Марія Олександрівна Четвертак

Abstract


In the paper the r-hypergeometric function \[^{r}_{1}\Phi^{\tau ,\beta }_{1} (a;c;x)\] is considered in the form \[^{r}_{1}\Phi^{\tau ,\beta }_{1} (a;c;x)=\frac{1}{B(a,c-a)}\int t^{a-1}(1-t)^{c-a-1}e^{xt}{_1}\Phi^{\tau ,\beta }_{1}\left ( \alpha ;\gamma ; \frac{1}{t(1-t)}\right )dt,\] where \[^{r}_{1}\Phi^{\tau ,\beta }_{1} (a;c;x)=\frac{1}{B(a,c-a)}\int_{0}^{1}t^{a-1}(1-t)^{c-a-1}{_1}\Psi_{1}\begin{bmatrix} ^{(a,\tau);}_{(c,\beta);}& |xt^\tau \end{bmatrix}dt,\]  \[{_1}\Psi_{1}\left [ ... \right ]\] is the generalized Fox-Wright function. Its basic properties are investigated. The formulas of differentiation are valid: \[\frac{d}{dx}{_1^r}\Phi^{\tau ,\beta }_{1}(a,c,x)=\frac{a}{c}{_1^r}\Phi^{\tau ,\beta }_{1}(a+1;c+1;x),\frac{d^n}{dx^n\frac{}{}}{_1^r}\Phi^{\tau ,\beta }_{1}(a,c,x)=\frac{\Gamma (a)}{\Gamma (c)}\frac{\Gamma (a+n)}{\Gamma (c+n)}{_1^r}\Phi^{\tau ,\beta }_{1}(a+n;c+n;x).\] The generalized integralLaplace transforms

with function \[^{r}_{1}\Phi^{\tau ,\beta }_{1} (a;c;x) \] in the kernel are received. The main properties of these integral transforms are studied. The Parseval equality for the new generalized integral transforms are proved. The inverse formulas for these new integral transforms are received.


Keywords


r-hypergeometric function; Laplace integral transforms; Parseval relation

References


Yu.A. Brychkov and A. Prudnikov, Integral Transforms of Generalized Functions.New York: Gordon and Breach, 1989, 344 p.

L. Debnath, Integral Transforms and Their Applications.Boca Raton: CRC Press, 1995, 456 p.

A.A. Kilbas and M. Saigo, H-Transforms: Theory and Applications.Boca Raton,FL: Charman and Hall/CRC, 2004, 390 p.

Вірченко Н.О. Узагальнення конфлюентних гіпергеометричних функцій // Доп. НАН України. – 2012. – № 5. – С. 7–11.

Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. – М.: Наука. – 1. – 1973. – 296 с.

N. Virchenko, “On the generalized confluent hypergeo­metric function and its application”, J. Fract. Calculus and Appl. Anal., vol. 9, no. 2, 2006, pp. 101–108.

Диткин В.А., Прудников А.П. Интегральные преобразования и операционное исчисление. – М.: Наука, 1974. – 544 с.

Вірченко Н.О. Узагальнені інтегральні перетворення. – К.: Задруга, 2013. – 398 с.


GOST Style Citations


 

 





DOI: https://doi.org/10.20535/1810-0546.2014.4.27210

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 NTUU KPI