Integral Transforms with the r-Hypergeometric Functions
DOI:
https://doi.org/10.20535/1810-0546.2014.4.27210Keywords:
r-hypergeometric function, Laplace integral transforms, Parseval relationAbstract
In the paper the r-hypergeometric function \[^{r}_{1}\Phi^{\tau ,\beta }_{1} (a;c;x)\] is considered in the form \[^{r}_{1}\Phi^{\tau ,\beta }_{1} (a;c;x)=\frac{1}{B(a,c-a)}\int t^{a-1}(1-t)^{c-a-1}e^{xt}{_1}\Phi^{\tau ,\beta }_{1}\left ( \alpha ;\gamma ; \frac{1}{t(1-t)}\right )dt,\] where \[^{r}_{1}\Phi^{\tau ,\beta }_{1} (a;c;x)=\frac{1}{B(a,c-a)}\int_{0}^{1}t^{a-1}(1-t)^{c-a-1}{_1}\Psi_{1}\begin{bmatrix} ^{(a,\tau);}_{(c,\beta);}& |xt^\tau \end{bmatrix}dt,\] \[{_1}\Psi_{1}\left [ ... \right ]\] is the generalized Fox-Wright function. Its basic properties are investigated. The formulas of differentiation are valid: \[\frac{d}{dx}{_1^r}\Phi^{\tau ,\beta }_{1}(a,c,x)=\frac{a}{c}{_1^r}\Phi^{\tau ,\beta }_{1}(a+1;c+1;x),\frac{d^n}{dx^n\frac{}{}}{_1^r}\Phi^{\tau ,\beta }_{1}(a,c,x)=\frac{\Gamma (a)}{\Gamma (c)}\frac{\Gamma (a+n)}{\Gamma (c+n)}{_1^r}\Phi^{\tau ,\beta }_{1}(a+n;c+n;x).\] The generalized integralLaplace transforms
with function \[^{r}_{1}\Phi^{\tau ,\beta }_{1} (a;c;x) \] in the kernel are received. The main properties of these integral transforms are studied. The Parseval equality for the new generalized integral transforms are proved. The inverse formulas for these new integral transforms are received.
References
Yu.A. Brychkov and A. Prudnikov, Integral Transforms of Generalized Functions.New York: Gordon and Breach, 1989, 344 p.
L. Debnath, Integral Transforms and Their Applications.Boca Raton: CRC Press, 1995, 456 p.
A.A. Kilbas and M. Saigo, H-Transforms: Theory and Applications.Boca Raton,FL: Charman and Hall/CRC, 2004, 390 p.
Вірченко Н.О. Узагальнення конфлюентних гіпергеометричних функцій // Доп. НАН України. – 2012. – № 5. – С. 7–11.
Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. – М.: Наука. – 1. – 1973. – 296 с.
N. Virchenko, “On the generalized confluent hypergeometric function and its application”, J. Fract. Calculus and Appl. Anal., vol. 9, no. 2, 2006, pp. 101–108.
Диткин В.А., Прудников А.П. Интегральные преобразования и операционное исчисление. – М.: Наука, 1974. – 544 с.
Вірченко Н.О. Узагальнені інтегральні перетворення. – К.: Задруга, 2013. – 398 с.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 NTUU KPI Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work