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Background. Development of automated diagnostic requires selection and improvement of appropriate machine
learning methods, in particular multiclass recognition. Artificial Neural Networks (ANN) of various architecture are
considered as an approach to the problem.

Objective. The goal is to analyze and compare performance of ANN-based classifiers on various datasets for further
improvement of model selection strategy.

Methods. ANN-based models of the distribution of class labels in terms of predictor features are constructed, trained
and validated for datasets of clinical records. Varying training algorithms for multi-layer perceptrons, Kohonen neural
network, linear functional strategy with multi-parameters regularization are considered.

Results. Performance of the classifiers is compared in terms of accuracy, sensitivity, and specificity. Linear functional
strategy classifier outperforms the other with more complex ANN-architecture and exhibits relative steadiness to
overfitting. Performance of Kohonen neural network on large dataset exceeds 90 % in terms of specificity for each
class, withal sensitivity for distinct classes is more than 95 %.

Conclusions. The understanding of the strengths and limitations of each method is crucial for careful choice of ANN-

based classifier, particularly its architecture, regularization and training algorithm.
Keywords: artificial neural network; classification; ultrasound image processing; regularization; inverse problem.

Introduction

Ultrasound imaging (ultrasonic imaging, ultra-
sound introscopy, USI) is a common medical diag-
nostic tool. USI is widely used for medical scree-
ning and automated USI images procession techni-
ques are of great interest. There were many automa-
ted diagnostic techniques based on procession of USI
images suggested [1—4]. These techniques involve
image segmentation, features extraction and data cla-
ssification. Many methods of classification are based
on artificial neural networks (ANN), particularly
multi-layer perceptrons (MLP). For example, vari-
ous convolutional neural network (CNN) architec-
tures are widely used for image classification. In
present work we are focused on thyroid gland dis-
eases recognition based on screening data that involve
USI images features, hormonal analysis results, other
patients’ data.

It was shown in [5] that Kohonen neural net-
work (NN) based classifier is efficient for ultrasound
image processing and classification with 9 classes
corresponding to diagnoses (normal, hypothyroidism,
cancer, nodes, thyroxicosis, goiter, diffuse goiter,
and samples with unknown and multiple diagnoses
simultaneously). Despite so called deep CNNs have
demonstrated impressive results on a number of com-
puter vision problems, their computational costs and
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the need for huge amount of data for training make
CNNs not always applicable for considered problem.

In this paper we demonstrate that application
of Linear Functional Strategy (LFS) for diagnosis
classification based on USI images can provide the
same or even better efficiency compared to neural
networks. In addition LFS requires significantly less
data and resources.

Problem statement

Let x =(x', x%, x>, ..., x") e R" be a vector of

medical measurements (or features extracted from

image). We can access clinical records of patients,
which contain the historical data, such as measure-

ments or extracted features x; = (xJ]-, xf, x]3- s X;) €RY,
j=12,...,m, and retrospectively estimated class la-
bel y; for the corresponding diagnosis. The goal is

to construct a classifier assigning class labels y to
the incoming instances with known predictor fea-
tures x.

ANN-based classifier model

Trying to achieve better results in performance
measurements we suggest to train the system to
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recognize the risk of each diagnosis separately yj-,

where i is class number, i.e. we teach the network
to separate just one cluster versus all of other data,
and then to recognize each diagnosis separately by
selecting the optimum weight coefficients for risk

combination of y; It corresponds to additional la-

yer in neural network, aggregating the outputs for
each class.

In this study we consider two main approa-
ches: Kohonen neural networks for dataset with large
number of features (see [5]), and linear functional
strategy (LFS) for dataset with relatively small num-
ber of features (see [6]), where use of large neural
networks is inappropriate because of propensity to
overfitting. LFS can be interpreted as a neural net-
work with one hidden layer, where the basic cons-
tructed rankers play the role of activation function.
LFS shows the promising results for medical appli-
cation, it is reliable and interpreted algorithm for
predicting nocturnal hypoglycemia in common in
patients with insulin-treated diabetes [7].

Below we recall the standard metrics for mea-
suring the performance of classifiers: true positive
rate (TPR), false negative rate (FNR), and the clas-
sification error percentage (CEP), i.e. the percent-
tage of incorrectly classified patterns, finally, accu-
racy = 100 % — CEP.

Kohonen NN for ultrasound image processing

For application of Kohonen neural network to
diagnosis classification the data set for more than
600 patients was applied [5]. The data set includes
introscopic images of thyroid gland, general formal
information (name, surname, age, sex, pilot diagno-
ses etc.) and results of biochemical assay to inves-
tigate hormones concentration (protein-bound trii-
odothyronine T3 and thyroxine T4, free FI3 and
FT4, additional thyroid stimulating hormone TSH
and the thyroglobulin TG), description and com-
plaints for each patient. USI system had a sector
transducer ASU-32 WL-7.5. All ultrasonic intro-
scopic images were obtained by ultrasound B-mode
scan at working frequency of 7.5 MHz.

Thyroid gland images of different patients
(Fig. 1) were processed for classification features ex-
traction. At first images were preprocessed by spec-
kle noise filter [4]. Thyroid gland ROI boundaries
were selected by the physician. Quantitative charac-
teristics of image texture were calculated using Ha-
ralick's texture features [8]. These characteristics of
image texture are extracted as intensity-based sta-
tistical features. The basis for these features is the

gray level co-occurrence matrix. This matrix is square
with NxN dimension, where N is 256 that corres-
ponds to the number of gray levels in the image.
Matrix element jj is generated by counting the num-
ber of pixel’s occurrences with value i adjacent to a
pixel with value j and then dividing the entire matrix
by the total number of such comparisons made. Af-
ter that the mean intensity, maximum intensity,
minimum intensity, central pixel’s intensity, variance,
standard variance, median intensity, skewness, kur-
tosis, correlation, covariance, inertia, entropy, ener-
gy, inverse difference moment of the ROI were com-
puted. Total number of features was 800.

Fig. 1. Ultra sound introscopy image for features extraction:

a — initial USI-image of thyroid gland tissue; b — re-
gion of interest selection made by physician

Patients were subdivided according to nosolo-
gical state of thyroid gland (without pathology, hy-
pothyrosis, diffusive goiter, thyrotoxicosis, chronic
thyroiditis, nodular goiter, combined goiter) and
patients’ age (younger than 30 years, from 30 to 40
years, from 40 to 50 years, from 50 to 60 years,
older than 60 years).

Kohonen neural network is a nonlinear model
for data clustering and classification [9]. Such a net-
work is a rectangular grid of nodes called neurons.
Each neuron has vector of coordinates w; in fea-
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tures space. Each object corresponds to features vec-
tor x;. For each object the distance d; =|w; — x| to

each neuron is calculated and the winner neuron
with the less distance is selected. Then coordinates
of the winner neuron are modified

Wi(t +1) = Wi(t) + r(xi - Wi(t))a

where r is small parameter.

The Kohonen map of size 3x3 was chosen. It
allows classifying data into 9 clusters corresponding
to diagnosis. After convergence of iterations the pro-
bability to obtain appropriate diagnose while hitting
certain neuron was computed. It was shown [5] that
features of the same diagnosis hit different neurons
with compared probability. It means that classical
Kohonen algorithm requires modifications. The im-
provement involves power coefficients p; that defines

the influence of different features on the distance
) 3 2
d* = Zpi(xi —-w;)".
i=1

System was trained to recognize each diagnosis sepa-
rately by selecting the optimum power coefficients
combination.

This approach is proved to provide significant
improvements in true positive (sensitivity) and false
negative (specificity) rates (Fig. 2). For instance for
thyrotoxicosis and mixed diagnoses the true posi-
tive rate of prediction is more than 90% and false
negative rate is more than 95 %.

Thus selection of appropriate features provides
significant improvements to classification accuracy.
Selection of such features evidently is not related
to neural networks and may be applied to much sim-
pler techniques as linear functional strategy (LFS)
and one can expect improvements in this case also.

On the other hand, LFS requires much less data
and computing resources for training and classifica-
tion.

Linear Functional Strategy for thyroid dataset

The thyroid dataset was created from real me-
dical tests screening for hypothyroid problems [10].
Based on the patient query data and patient exa-
mination data, the task is to determine whether a
patient thyroid has overfunction, normal function,
or underfunction. Therefore three classes are built:
normal (not hypothyroid), hyperfunction and subnor-
mal functioning. Since most people were healthy
92.58 % of cases belong to the normal group. 21 me-
dical tests were made in most cases, with 6 continu-
ous and 15 binary values, and about 10 % of values
missing. A total of 7200 cases are given: 3772 results
from one year, and 3428 from the next one. Thus
from the classification point of view this is a 3 class
problem with 22 attributes.

One of the first attempts in multi-class cluste-
ring by means ANNs was done in [11]. The training
set here consists of 3772 measurement vectors from
the first year, and 3428 measurements of the second
year are available for testing. It was shown that it’s
hard to train Backpropagation ANNs with the data-
set: for fixed fully interconnected 3-layer network
the best achieved CEP is at most 2.42 %, for batch
mode even worse (7.15 %). It was shown, that with
various learning rate adaptation techniques the best
achieved CEP is 1.55 %. The cascade correlation al-
gorithms clearly outperforms all other algorithms
(1.52 % of CEP), but it is not directly comparable
with them, as it differs in many ways, as the archi-
tecture of the network is not fixed, new hidden units
are trained and added one by one.
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Fig. 2. Performance of modified Kohonen neural network-based classifier in terms of sensitivity and specificity for each class corre-

spondingly: [l — sensitivity; 1 — specificity
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Several algorithms were used to train ANNs
in [12]: the Backpropagation algorithm, the Le-
venberg—Marquardt algorithm, a Generic Algorithm,
a hybrid between Generic Algorithm and Backpro-
pagation, and a hybrid between Genetic Algorithm
and Levenberg-Marquardt. The thyroid dataset was
split into two sub-groups: one for training the ANN
(5400 of all 7200 items in the dataset, i.e. 75 %),
while the testing set is the remaining 1800, or 25 %
of the items. The architecture of the network (multi-
layer perceptron) used for the task is composed of
three layers: the input with 21 neurons, output with
3 neurons and additional hidden layer with 6 neu-
rons. The activation function used in every artificial
neuron of the network is the sigmoid function. It
was shown that all algorithms except the Leven-
berg—Marquardt algorithm always obtain 7.28 % of
CEP, while the latter one gives 2.14 %.

The conventional neural networks with various
training algorithms seem to be too complicated and
easy to overfit, therefore LFS seems to be more ap-
propriate.

We split the training set into two subsets: train-
ing set per se, and cross-validation set. This cross-
validation set is used for selection of LFS coeffi-
cients. For each class i we consider ranking func-

tion y; (y) for various values of parameter y of Gau-
ssian kernel

-2
K(x,X) = exp[—wj, y=0.1,0.5,1,5,10.
Y

As the problem is ill-posed, some regularization is
required. We use multi-parameter regularization,
which allows for simultaneous feature selection.

Then for aggregated risks y}(y) we use all training

data to construct yj’ The proposed technique allows

selecting 5 most important features that gives accu-
racy 99.5 % on training set and 99.07 % on test set,
that obviously outperforms previously described con-
ventional ANNs. Note, that multi-parameter regula-
rization and corresponding feature selection increase
performance in term of accuracy from approximately
95 % to nearly 99 %.
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I".B. Kptokosa, C.IN. PagueHko, O.0. CynakoB

LUTYYHA HEMPOHHA MEPEXA [ MYNbTUKIACOBOI KIACU®GIKALLIT TA Tl SACTOCYBAHHSA 10 BUSHAUEHHSA dYHK-
LIOHANTIBHOIO CTAHY WWTOBUAHOT 3ANO3N

Mpo6nemaTuka. Po3pobka 3acobiB aBTOMATUYHOI AiarHOCTMKM BUMarae BUOopy 1 yAOCKOHANEHHs BiANOBIAHNX METOAIB MaLUUH-
HOro HaBYaHHs, 30KpeMa MynbTUKacoBoi knacudikauii. LLob agpecysaTtu uo 3agady, po3rnaaarTbes WTYYHI HEMPOHHI mepexi (LUHM)
PI3HWUX KOHCTPYKLiN.

MeTa gocnigxeHHsA. MeToto poboTu € aHani3 Ta NOPIBHAHHA ePEKTUBHOCTI krnacudikatopis, wo 6a3syoTbes Ha LUHM, Ha pisHnx
[aHuX Ans noaanbLIoro BAOCKOHANEHHs cTparterii Bubopy mogeni.

MeToauka peanisauii. [obynosaHo mopeni Ha ocHoBi LUHM po3noginy knacoBux MiTok 03Hak NpeauKTopa, TPEHOBaHi Ta OLjiHEHi
Ha KniHiYHMX gaHux. JocnigkeHo pi3Hi anropuTMm HaBYaHHs GaraTowapoBOro nepcenTpoHa, HEMPOHHY Mepexy KoxoHeHa Ta MiHiiHy
yHKLiOHaNbHY cTpaTerito 3 6araTonapaMeTpUYHOK perynsipusauieto.

Pe3ynbTaTtn gocnigaxeHb. EeKTUBHICTL KnacudikaTopiB NMOPIBHIOETLCA 3 TOYKM 30pY TOYHOCTI, YYTNAMBOCTI Ta CneundivHOCTi.
Knacudikatop, nobynosaHui 3a 4ONOMOrOK NiHINHOI pyHKUiOHaNbHOI cTpaTerii, Bunepeaxae iHwi, wo 6asytotbes Ha LHM 3i cknag-
HOI apXiTEKTYpPOLO, a TaKoX AEMOHCTPYE BiLHOCHY CTilKiCTb 10 NepeHaBYaHHs. [poayKTUBHICTb HEMPOHHOT Mepexi KoxoHeHa Ha Benu-
Knx Habopax AaHux no cneundivHocTi nepesuwlye 90 % ANs KOXHOro Knacy, OAHOYacHO 3 TUM YyTNMBICTb ANs1 OKPEMMX KnaciB nepe-
BuLLye 95 %.

BucHoBKW. PO3yMiHHSI cynbHKX i cnabux CTOPiH KOXHOro MeToAdy € HaA3BUYalHO BaXIMBMM ANA peTernbHoro fobopy knacudi-
KaTopa Ha ocHoBi LLIHM, 3okpema 1noro apxiTekTypu, anropuTmiB perynsipuaawii Ta HaB4aHHs.

KnioyoBi cnoBa: wTy4yHa HelipoHHa Mepexa; knacudikauis; obpobka ynbTpasBykoBUX 300paxeHb; perynspusauis; obepHeHa
3agava.

I".B. KptokoBa, C.IN. PagyeHko, A.A. Cyanakos

WCKYCCTBEHHAA HEMPOHHASA CETb A MYJIbTUKITACCOBOW KINACCUGUKALIMU N EE MPUNOXEHWE K OMPEJE-
NEHWIO ®YHKLIMOHATIBHOMO COCTOAHUA LWWATOBUOHOW XXENE3bI
MNpob6nemaTtunka. Pa3snTne MeTo40B aBTOMATUYECKON AMArHOCTUKK TpebyeT Bbibopa 1 COBEPLUEHCTBOBAHUA MOAXOAALLUMX METO-

0B MaLUMHHOrO 0ByYeHUs, B YaCTHOCTW MyMbTUKNAcCOBOM knaccudukauun. B kavecTBe noaxoda k aTon 3agave paccmaTpuBaeTcst Uc-
KycCTBeHHas HepoHHas ceTb (MHC) pa3Horo cTpoeHus.
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Llenb nccneposanumsa. Lienbio paboTel ABNSETCA aHanns u cpaBHeHVE NPOU3BOAUTENBHOCTM KraccudmrkaTopos, 6asnpyrowmxcs
Ha MHC, Ha pa3nunyHbIX AaHHbIX AN AanbHeLero coBepLLEHCTBOBaHNS cTpaTerum Beibopa mogenu.

MeToguka peanusauumu. [octpoeHbl mogenu Ha ocHoBe MHC pacnpegeneHust KnaccoBblX METOK B 3aBUCUMOCTU OT NPU3HaKOB
npeaukTopa, obyyeHbl 1 NPOBEPHbI HA KIMHUYECKUX AaHHbIX. PaccMOTpeHbl pa3nuyHbie anroputMbl 00y4eHUst MynbTUCIIONHOTO nep-
LenTpoHa, HelpoHHasi ceTb KoxoHeHa 1 nuHeHas dyHKUMOHaNbHas cTpaTerus ¢ MHOronapaMeTpuyeckon perynspusaumen.

PesynbTathl uccnegoBaHuit. [pon3BOAUTENBHOCTL KNACCUMKATOPOB COMOCTABMSIETCH OTHOCUTENBHO TOYHOCTU, YYBCTBUTENb-
HOCTU U cneundunyHocTu. Knaccudumkatop Ha OCHOBE NMUHEWHOW hyHKUMOHANbHOW CTpaTernyn onepexaeT Apyrve Ha ocHoBe Gonee
cnoxHblx MHC, a Takke AeMOHCTpUpyeT CpaBHUTENbHY YCTONYMBOCTL K NepeobyyveHuto. MpoayKTMBHOCTL HeMpoHHON ceTn KoxoHeHa
Ha 6onbluMx Habopax AaHHbIX No crneundunyHocTu npesbiwaeT 90 % Ana KkaXaoro knacca, Npy 3TOM YyBCTBUMTENbHOCTb AN OTAENb-
HbIX Kraccos npesbiwaeT 95 %.

BbiBoAbl. MoHUMaHWe cunbHbIX U cnabbix CTOPOH Kaxdoro Metoaa umeeT ocoboe 3HayeHve Anst ToO4Horo Bblbopa knaccuduka-
Topa Ha ocHoBe VICH, B 4aCTHOCTW ero apxXuTeKkTypbl, anroputMoB perynspusauum n obyyeHus.

KnioyeBble cnoBa: NCKycCTBEHHasi HEMPOHHas CceTb; Knaccudukauus; obpaboTka ynbTpa3ByKOBbIX U300paxeHui; perynspusa-
uus; obpaTHas 3agada.
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