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MODELING OF MOLECULAR DIFFUSION IN NON-HOMOGENEOUS MEDIA™

Background. Due to combined effects of medium inhomogeneity and action of external forces, i.e. Earth’s gravitation,
electro-magnetic forces, global rotation, etc., a number of specific fluid motions appear in the environmental and life
systems even in absence of pure mechanical reasons. Among them are so called diffusion-induced flows which always
exist around obstacles with arbitrary geometry due to breaking of natural molecular flux of a stratifying agent on an
impermeable surface.

Objective. The aim of the paper is to analyze numerically a diffusion induced flow structure and dynamics around mo-
tionless obstacles immersed into a stably stratified medium, including a sloping plate, a wedge-shaped obstacle, a disc,
and a circular cylinder. The numerical results obtained are compared with the available analytical and experimental data.
Methods. The problem is solved numerically using two different algorithms based on the finite difference and finite
volume methods. The first approach is implemented in the specially developed Fortran program codes, and the second
one is based on the open source package OpenFOAM with the use of C++ programming language for developing special
own solvers, libraries, and utilities, which enable solving the problems under consideration.

Results. The numerical simulation reveals a complex multi-level vortex system of compensatory circulating flows
around a motionless obstacle, which structure is strongly dependent on its position relative to the horizon. The most
intensive and extended high-gradient horizontal interfaces attached to sharp edges or poles of obstacles are clearly
observed in the numerical computations and laboratory experiments. Diffusion-induced flows form intensive pressure
deficiency zones around an obstacle, which may lead to generation of propulsion mechanism resulting in self-movement
of neutral buoyancy bodies in a continuously stratified fluid, e.g. horizontal movement of a wedge, rotation of a sloping
plate, etc.

Conclusions. Diffusion-induced flows are a wide-spread phenomenon in biology, medicine, and environmental sys-
tems, since such flows inevitably occur in any inhomogeneous media, including different solutions, suspensions, mix-
tures, etc. A complex multilevel vortex structure of diffusion-induced flows on an obstacle becomes even more compli-
cated due to self-motion of the obstacle itself and displacement of various admixtures, suspended particles, additives, etc.,
which are always present in the real systems.
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Introduction

The environmental and life systems are mostly
inhomogeneous in space and variable in time due to
non-uniform distributions of dissolved matters, sus-
pended particles, gas bubbles, temperature, medium
compressibility, etc. As a result of the combined
influence of medium inhomogeneity and the effects
of external forces, i.e. Earth’s gravitation, magnetic
field, global rotation, etc., a stable stratification is
formed, which gives rise to a number of effects and
fluid motions absent in homogeneous media, inclu-
ding specific types of waves, flows, fine structure flow
elements, even in the absence of purely mechanical
reasons. Among such phenomena are convective flows
driven by spatial variations in fluid density or the
so-called diffusion-induced flows on geometrical ir-
regularities of topography. Investigations of such flows
have received much attention in laboratory studies
and numerical and analytical modeling because there
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are abundant instances of the phenomena in envi-
ronmental and life systems.

A diffusion-induced flow occurs when molecu-
lar flux of the substance existing naturally in a stably
stratified fluid encounters a sloping boundary that cre-
ates a physical basis for the formation of compen-
sating fluid motions even in the absence of mecha-
nical reasons. Molecular diffusion requires that sur-
faces of constant density (isopycnals) approach a slo-
ping boundary at an appropriate angle to ensure the
condition of continuity of diffusive flux. For a barrier
impermeable to a stratifying agent, which is the com-
mon salt, NaCl, in a particular case under conside-
ration, isopycnals must be locally perpendicular to the
slope in order to satisfy the no-flux boundary condi-
tion, dp/on =0, where n is the wall-normal coordi-

nate. A fluid adjacent to the sloping boundary there-
fore differs in density from a fluid at the same level
away from the boundary, and experiences a buoyancy
force that drives the flow up- or down-slope for the
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underlying and overlying walls, respectively, the ki-
netic energy of motion being drawn from the inter-
nal energy of the fluid through diffusion.

Diffusion-induced flows form the basis for a
variety of physical processes, including mineral trans-
port in rocks [1], the melting of icebergs [2], the
migration of tectonic plates [3], the processes of trans-
port and mixing of passive substances, the formati-
on of intensive valley and mountain winds in a stably
stratified atmosphere [4] and density flows in the
ocean [5].

A permanent interest in the problem exists due
to the enlarging spectrum of practical applications
including ecological and biological ones. It was found
experimentally that a diffusion-induced flow may trig-
ger a propulsion mechanism leading to a self-move-
ment of neutral buoyancy solids with a special shape
in a continuously stratified ocean medium. The labo-
ratory experiments [6] show that when a neutrally
buoyant wedge-shaped object floats in a density-stra-
tified fluid, the diffusion-induced flow generated by
molecular diffusion at its sloping boundaries produ-
ces a macroscopic sideways thrust. Computer simu-
lations reveal that thrust results from the diffusion-
induced flow creating a region of low pressure at the
front, relative to the rear of an object. This discovery
has implications for transport processes in regions of
varying fluid density, such as marine snow aggrega-
tion at ocean pycnoclines, and wherever there is a
temperature difference between immersed objects and
the surrounding fluid, such as particles in volcanic
clouds. An essential influence of diffusion-induced
flows upon the displacement of separate elements of
plankton in ocean media is maintained not only by
the breaking of background diffusion flux of the stra-
tifying agent but also by additional concentration gra-
dients generated by the products of natural metabo-
lism of the elementary organisms. A variety of diffe-
rent applications encouraged the development of new
approaches for the problem under study and stimu-
lated the application of advanced data analysis tech-
niques for a unified characterization of experimental
and numerical data sets, for the estimation of their
quality and information capacity.

The first mathematical model of diffusion-in-
duced flows was created in the middle of the past
century with application to the problem on moun-
tain and valley winds [4]. The marked universality
mechanism of hillside flows formation both in the
stratified atmosphere and the ocean [1, 7] restored the
interest in the problem after a long pause. In the
pioneering theoretical investigations of diffusion-in-
duced flows the stationary solutions were obtained
in the infinite plate approximation on the basis of a
linearized system of equations [4]. For constant slope,

and assuming along-slope flow that is a function
only of the wall-normal coordinate (that is, unidi-
rectional flow), the velocity profile for a steady dif-

fusion-induced flow is u(n) = uye " sin(yn), where
uy = 2xgy-cote is the characteristic tangential flow
velocity, y~! =(N?sin’¢/ 4v1<S)’1/4 is the along-
slope flow thickness, N = \/—g /po(dp/dz) s the
buoyancy frequency, p, is the characteristic fluid

density, kg is the molecular diffusivity and v is the

kinematic viscosity. The non-stationary problem was
analyzed first asymptotically on an infinite slope in
the work by Linden and Weber [8] and was then
solved exactly by Kistovich and Chashechkin [9].

Problem statement

The goal of the present work consists in con-
struction of a numerical algorithm for computing
diffusion induced flow structure and dynamics aro-
und motionless obstacles immersed into a stably stra-
tified medium without any restrictions on their geo-
metrical form and angular position in space.

As a validation of the developed numerical ap-
proach the computation results on diffusion indu-
ced flows around a sloping plate, a wedge-shaped
obstacle, a disc, and a circular cylinder are compa-
red with the available analytical data and experimen-
tal images obtained by the high-resolution Schlieren
technique [10].

A particular goal of the investigations consists
in finding physical mechanisms for generation of
propulsion force resulting in self-motion of neutral-
buoyancy bodies in a stratified medium, e.g. hori-
zontal movement of a wedge, rotation of a sloping
plate, etc. For this purpose all the kinematic and
dynamic characteristics of diffusion-induced flow aro-
und a wedge and a plate are analyzed in details for
various geometrical parameters of the problem.

A special emphasis is made in the paper to the
universality mechanism of diffusion-induced flows for-
mation regardless of a way of forming medium in-
homogeneity and a type of acting external force,
which both together form a stable stratification. This
enables applying the problem under consideration
not only to environmental systems but, as well to a
wide spectrum of problems in biological and medi-
cal sciences.

Mathematical modeling
As a mathematical model for the problem un-

der consideration the fundamental system of equa-
tion for multicomponent inhomogeneous incom-
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pressible fluid in the Boussinesq approximation is
considered taking into account the buoyancy and
diffusion effects of a stratifying agent (salinity) [11].
In the study of slow, as compared to the speed of
sound, flows of fluids characterized by high thermal
conductivity, one can account in calculations only
for variations in density associated with concentra-
tion of the stratifying agent neglecting temperature
variations. Thus, the governing equations take the
following form [12]

p = pgo(exp(—=z/A) +s), divy =0,

N W= vPrvav-sg, (D)
ot Poo

v
§+V~VS = kgAs + —=.
ot A

Here, s is the salinity perturbation including
the salt compression ratio, v = (v v.) is the

vector of the induced velocity, P is the pressure
except for the hydrostatic one, v =107 cm?/s and

xavys

kg = 14110~ cm?/s are the kinematic viscosity and

salt diffusion coefficients, ¢ is time, V and A are
the Hamilton and Laplace operators respectively.

An obstacle with impermeable boundaries is
submerged with minimum disturbances into a qui-
escent stratified environment. Physically valid ini-
tial and boundary conditions in the associated co-
ordinate system are no-slip and no-flux on the sur-
face of the obstacle for velocity components and to-
tal salinity respectively, and vanishing of all the per-
turbations at infinity,

Vi<0=0, sl<o=0, Plo=0,

os 1 oz
Vv =V :0, _— =—, 2
x|2 z|2 |:an:|Z A én ( )
Vx|x,z—>oo= 0, Vzlx,z—mo:O’

where, n is external normal unit vector to the sur-

face, 2., of an obstacle which can be either a plate
or a wedge with length, L, and thickness, h,, or,
h,,, respectively.

The diffusion-induced flow structure and kine-

matics are characterized by universal microscales,

8y =+v/N and 8y =.xg/N , which define fine

structural flow components caused by the combined
dissipation and stratification effects, and typical ve-

locity scales, Uy =~vN, Uy =./xgN, character-

izing speed of fluid motion due to the molecular
processes in a medium [13].

Numerical simulation

Numerical solution of the system (1) with the
boundary conditions (2) was constructed using the
finite volume method within the frame of the open
source computational package OpenFOAM. New de-
veloped solver of the package, which is based on the
standard one, icoFoam, solving Navier—Stockes equa-
tions for homogeneous viscous fluid, was supplemen-
ted by new equations for calculating fluid density
and salinity, and specific program codes implemen-
ting no-flux boundary conditions for salinity pertur-
bation on the impermeable surface of an obstacle.

To interpolate the convective terms in the go-
verning equations a limited TVD-scheme was used,
which ensures minimal numerical diffusion and ab-
sence of non-physical oscillations of the solution. For
discretization of the time derivative a second-order
implicit asymmetric three-point scheme with back-
ward differencing was used, which ensures a good
time resolution of the physical process. For calcu-
lating the diffusion terms, based on the Gauss theo-
rem within orthogonal grid sections, a surface normal
gradient was evaluated at a cell face using a second
order normal-to-face interpolation of the vector con-
necting centers of two neighboring cells. In non-
orthogonal grid regions, an iterative procedure with
a user specified number of cycles was used for non-
orthogonal error correction due to a grid skewness.

For solving the resulting system of linear equa-
tions conjugate (PCG) and biconjugate (PBiCG)
gradient methods were used with DIC and DILU
preconditioning for symmetric and asymmetric ma-
trices respectively, which are based on simplified
procedures of incomplete Cholesky and LU factori-
zation. For coupling equations for momentum and
mass conservation an unsteady well-convergent al-
gorithm PISO (Pressure-Implicit Split-Operator)
was used, which works in the most effective way for
transient problems.

For fast and efficient regeneration of orthogo-
nal computational grid when changing the geometric
parameters of the problem, such as length, thick-
ness, and angle of inclination of an obstacle, num-
ber of cells and grading level of the grid in each di-
rection, etc., automated program was developed. The
program enables according to a prescribed algorithm
recreating the standard reference files used by utili-
ties of the OpenFOAM package for spatial discreti-
zation of the problem. The algorithm for construct-
ing a computational grid around the obstacle, ori-
ented at an arbitrary angle to the horizon, consists
in creation of two separate computational grids. The
inner cylindrical grid around the plate can be ro-
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tated together with the obstacle when angle of its
inclination is changed. The external fixed grid is
merged with the rotating part at the interface using
the standard utilities of the package.

The computations were terminated when the
integral characteristics or their statistical evaluations
take values of steady-state regime. The spatial dimen-
sions of the computational cells were chosen from
the condition of an adequate resolution of the fin-
est flow components associated with the stratifica-
tion and diffusion effects, which impose significant
restrictions on the minimum spatial step. In high-
gradient regions of the flow, at least several compu-
tational cells must fit the minimal linear scale of the
problem. Calculation time step, Af, was defined by

the Courant’s condition, Co =|v|A?/Ar <1, where

Ar is the minimal size of grid cells and v is the lo-
cal flow velocity.

Computation results

An impenetrable obstacle immersed into a stra-
tified fluid breaks the natural diffusion transport of
a stratifying agent and creates a complex system of
fluid flows including basic thin jets along sloping
boundaries and secondary compensatory back flows.
In this section, numerical results are presented on
steady-state structure and dynamics of diffusion-in-
duced flows around an impermeable motionless slo-
ping plate and a wedge with finite length, which are
immersed into a stably stratified medium [10, 14, 15].
Such investigations are of a great scientific and prac-
tical interest since both the stationary and non-sta-
tionary analytical solutions of the problem are con-
structed only in the approximation of an infinite
plane. However, the most interesting features of dif-
fusion-induced flows are located directly in the vi-
cinity of sharp edges of an obstacle, where a com-
plex multi-level vortex system of compensatory fluid
motions and extended high-gradient horizontal in-
terfaces are formed, which are clearly observed in
the laboratory experiments [16].

Diffusion-induced flow structures around a slo-
ping plate and a wedge have a lot of common struc-
tural elements but there are, as well, many distinc-
tive features due to peculiarities of the geometry.

Diffusion-induced flow on a sloping plate. The
clearest representation of diffusion-induced flows on
a horizontal plate can be given by stream lines, which
are shown in Fig. 1. The general structure of the
flow consists of a four-level sequence of horizontally
oriented circulating cells, which are located symmet-
rically relative to the plate’s horizon and its central
vertical plane [14, 15]. The contacting cells circu-

late in opposite directions and are mutually coor-
dinated in contrast to the case of thermal convec-
tion where circulations in adjacent cells have the
same signs. The diffusion-induced flow around a long
plate has the simplest structure with the vertical sca-
les of the circulating cells virtually unchanged along
the horizon (Fig. 1, a). The detailed consideration
of fine flow structure near the plate’s edges reveals
that the centers of the basic circulating cells are mo-
ved away from the edges in both directions to dis-
tances comparable with the typical scale of fine struc-

A%
ture components, Sy .

Shortening the length of the plate has practi-
cally no influence on far flow field but leads to a
significant complication of the primary structure of
circulating cells together with a decrease in their
intensity and thickness around the barrier. A very
small plate’s length represents a particular case of
infinitesimal geometrical non-uniformity settled in
a quiescent, stably stratified fluid (Fig. 1, b). In this
extreme case, the compensating flows have the smal-
lest intensity but nevertheless do exist, and from the
general flow structure, which looks as if the stream
lines of the flow converge to a point when approa-
ching the obstacle.

Z

= ——— >

=

Fig. 1. Stream lines of the diffusion-induced flow around a ho-
rizontal plate of different lengths in a continuously stra-

tified fluid (N=1.26 5™, ¢ = 0°): @, b — L = 10; 0.1 cm
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Even a smallest deviation from the horizontal
position of the plate leads to flow symmetry break-
down and the formation of new circulation systems
including unidirectional jet flows along both the
sides of the sloping plate and compensating circu-
lating flows (Fig. 2, a). A single circulation system is
formed around the plate surface, where fluid flows
down along the lower side of the plate, turns around
in the large cell adjoining the right edge, flows up
along the upper side of the plate, turns left and closes
in the down-slope jet flow. At small slope angles two
types of flows co-exist near the obstacle when some
fluid remains closed in the vortex flow directly near
the plate’s edge and another part accomplishes cyc-
lonic circulating motion around the whole surface
of the obstacle.

A further increase in slope angle leads to the
formation of a uniform distribution of basic jet flows
along virtually the whole length of the plate exclu-
ding small regions near its edges. The area of blocked
fluid decreases and the basic cyclonic circulating cell
enlarges due to splitting of the main jet flows into
two opposite directions while keeping the cyclonic
direction of fluid circulation (Fig. 2, b).

At slope angles greater than 20°, new complica-
ted vortex systems start arising near the plate’s edges
within the circulating cells directly adjacent to the
basic jet flows (Fig. 2, ¢). The large circulating cells
located at some vertical distance from the plate’s
edges are oriented mostly horizontally within the
whole length of the computational domain.

Further increase in slope angle leads to elon-
gation of these vortex structures to a wing-shaped
form, and the general flow structure takes virtually
a symmetrical form relative to the plate’s plane. At
the external border of the adjacent circulating cells,
additional non-uniformities are revealed, which regu-
larity correlates directly with the value of buoyancy
period T, (Fig. 2, d).

Calculated fields of density gradient Vp for dif-
fusion-induced flows on a sloping plate, where both
large-scale components and fine structure streaks are
manifested, are in a good agreement with the high-
resolution schlieren images of refraction ratio gradi-
ent (the density and the refraction ratio of salt so-
lutions are in a linear relation [16]). The calculated
pattern and the schlieren image shown in Fig. 3 de-
monstrate clearly distinguished sharp horizontal inter-
faces, which are adjoined directly to the plate’s edges.
These typical horizontal streaks, which are lengthened
with increasing sensitivity of a registration method,
always exist in stratified media at an arbitrary orien-
tation of an obstacle and are absent in homogeneous
fluid.

—_
(9]
—_
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Fig. 2. Stream lines of the diffusion-induced flow around a slo-
ping plate in a continuously stratified fluid for different
slope angles (L =5 cm, N=1265s"): a—d — ¢ = 1°; 10°;
30°; 60°
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Fig. 3. Calculated flow patterns (a) and schlieren-visualized
images of stratified flows (b) around the motionless
horizontal (¢ = 0°) and sloping (¢ = 40°) impermeable
plates: 7, =7.6s, L=7.5 cm

Diffusion-induced flow on a wedge. Now let’s
study diffusion-induced flow structure and dyna-
mics around a wedge with straight, concave, and
convex side boundaries for the following parame-
ters of the wedge, L = 10 cm, A, = 2 cm, and fluid
properties, N = 1.26 s ' (T, = 5s), v = 1072 cm?/s,
kg = 1.41-107° cm?/s [15]. The parameters of strati-
fied fluid are chosen to be typical for the laboratory
experiments [16], which significantly exceed typical
values of stratification in the natural systems, i.e.
atmosphere and hydrosphere of the Earth.

Fields of the basic physical variables of steady
diffusion-induced flow on a wedge are shown in
Figs. 4 and 5, which are constructed using the tech-
nique of polychromic map of isolines. Within such
an approach brightness of green and blue colors of
the images, which correspond, respectively, to posi-
tive and negative values of a field, are varied from
light to dark tones between adjacent isolines. Such
a technique of field construction allows extracting
both qualitative and quantitative information from
the patterns and analyzing flow fine structure, as
well.

Fig. 4. Fields of salinity perturbation (a), horizontal (b) and
vertical (¢) components of velocity of diffusion induced
flow around a wedge with straight boundaries (L = 10 cm,
N=126s", T,=5s, h, =2 cm). Green and blue co-
lours of the images correspond, respectively, to positive
and negative field values, which are varied from light to
dark tones between adjacent isolines

. Patterns of pressure field around a wedge-shaped ob-
stacle with straight (a), concave (b), and convex (c) side

boundaries (L =10 cm, N=1.265s", T,=5s, h,=2cm)
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Structure of the fields in Fig. 4 contains a num-
ber of common features manifested near both the
front vertex of the wedge, where slope jet flows are
formed, and the back edges, where they separate
from the obstacle. Fig. 4, a demonstrates a layered
structure of the salinity field due to braking of mo-
lecular diffusion flux on the impermeable surface of
the obstacle that, in its turn, triggers formation of cir-
culating fluid motions illustrated by Figs. 4, b and c.

Mechanism for formation of the diffusion-in-
duced flow is illustrated by the pattern of salinity per-
turbation field in Fig. 4, a. Thin layers of salinity de-
ficiency and excess are attached directly to the upper
and lower surfaces of the wedge, respectively, that
is manifested in form of blue and green streaks in the
pattern. The near-wall layers are adjoined by less in-
tensive regions of salinity excess (thin green streak
above the obstacle) and deficiency (thin blue streak
beneath it), which do not reach the vertices of the
wedge. Horizontally extended regions of salinity de-
ficiency and excess are also located in front of the
wedge above and beneath its horizon, respectively.
An extended area with virtually unperturbed distri-
bution of salinity perturbation is located close to the
base of the wedge, which supplements the obstacle
to a symmetrical form relative the base (“a reflected
wedge with curvilinear boundaries”). Near the edges
of the base fine structural asymmetrical perturbations
are formed, which penetrate into the bottom area be-
hind the wedge like in case of a sloping plate [14, 15].

Pattern of horizontal component of velocity
field, which is shown in Fig. 4, b, has a symmetri-
cal form relative to the central horizontal plane of
the wedge, z = 0. Thickness of the ascending and
descending jet flows takes values of about 0.32 cm
and 0.19 cm near the tip and the base of the wedge
respectively. When separating from the surface at the
base and spreading further into the surrounding fluid
the adjoined secondary jet flows are thickened al-
most 1.4 times. Thin layers of reverse flows are adjoi-
ned to internal boundaries of the free jets, which are
manifested the best around the edges of the wedge.

The most complicated flow structure is obser-
ved in the field of vertical component of velocity
presented in Fig. 4, c¢. Fluid flows away from the
surface of the wedge in a layer of almost uniform
thickness of 0.28 cm, but at distance of about 2 cm
from the bottom section it is sharply thickened to
value of 0.65 cm and in the direct vicinity of the base
it is thinned again to value of about 0.3 cm. Almost
through the whole length of the wedge the layers of
outgoing fluid are adjoined by compensatory reverse
flows. Their thickness is the smaller the closer to the
area of flow bifurcation where the reverse flows are

absent at all and appear only around the base of the
wedge. The flows with ascending and descending
velocity components interact with each other at the
tip of the obstacle that results in a complex struc-
ture of vertical component of velocity field. The most
complicated pattern is observed in the vicinity of
the sharp edges of the base where a typical ‘rosette’
of dissipative gravity waves is formed [9].

Fig. 5 shows patterns of pressure field around
a wedge with straight, concave and convex side boun-
daries. By analyzing this field one can study dyna-
mical effects of the surrounding fluid on the obstacle
and, particularly, determine dimensions of flow re-
gions with negative pressure (coloured blue) in front
of the obstacle which turn to be proportional to pro-
pulsion force resulting in self-movement of a free
wedge-shaped obstacle.

Pressure takes negative values in a large expan-
ding area in front of the sharp vertex of a wedge with
straight boundaries, two tapering regions being loca-
ted at some distance from the surface of the wedge
and thin streaks adjoining directly to the surface, as
well (Fig. 5, a). The regions with negative pressure
are generated due to formation of the ascending and
descending flows along the sloping boundaries of the
wedge as a result of breaking of salinity diffusion flux
on the impermeable surface.

Structure of the pressure field around a concave
wedge looks very similar to that of a wedge with
straight boundaries except for some minor distinc-
tive details (Fig. 5, b). The triangular-like regions
and thin streaks over and beneath the surface of the
concave wedge are slightly longer and thicker that
speaks for more intensive propulsion mechanism in
this case.

Thickness of the pressure deficiency zone near
the sharp vertex of a convex wedge is about twice
smaller than that for a concave one (Fig. 5, c). This
result can be explained by deceleration of the ascen-
ding and descending flows and, as a result, decrease
of propulsion intensity due to wedge opening at the
apex when curvature of its lateral boundaries is in-
creased.

With start of motion of an obstacle due to the
action of the propulsion mechanisms (that is, rota-
tion of a plate or straight line movement of a wedge)
diffusion-induced flow is changed dramatically due
to “inclusion” of new flow components such as up-
stream and attached internal waves, non-stationary
vortices in the wake past an obstacle and fine struc-
tural interfaces [13]. In this case, diffusion-induced
flow around an obstacle becomes a complex, multi-
scale, and transient physical process accompanied by
interactions of large and fine scale components be-
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tween each other and with free stream, which are cha-
racterized by their own geometries, spatial and tem-
poral scales, manifestation level, and dissipation rate.

Conclusions

Diffusion induced flow structure and dynamics
around a motionless sloping plate and a wedge-sha-
ped obstacle immersed into a stably stratified me-
dium were analyzed numerically based on the fun-
damental equations set using original Fortran pro-
gram codes and solvers of own development within
the framework of the open source package Open-
FOAM.

Diffusion-induced flows always exist around ob-
stacles with an arbitrary geometry as a result of brea-
king of natural molecular flux of a stratifying agent
due to combined influence of medium inhomoge-
neity and effects of external forces, i.e. Earth’s gra-
vitation, magnetic field, global rotation, etc. Even a
very weak stratification essentially affects flow fine
structure and dynamics, especially near the sharp ed-
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#A.B. 3arymeHHun

MOJEJIIOBAHHA MONEKYNAPHOI ANoY3li B HEOQHOPIQHOMY CEPEAOBWLL

Mpo6nematuka. CninbHU BNAMB HEOAHOPIAHOCTI CepeaoBMLLA i 30BHILLHIX AMHAMIYHUX dbakTopiB (rpaBiTauis 3emni, enekTpo-
MarHiTHi cunu, rmobanbHe o6epTaHHs TOLLO) MOXE NPU3BOAUTU A0 NOSIBA HU3KM crieumdidHuX pyxiB piavH Y NPUPOOHMX CUCTEMax Ha-
BiTb 3@ BiACYTHOCTI YNCTO MeXaHidHuX npuuunH. Cepea HUX — Tak 3BaHi Tevii, iHAykoBaHi Andysieto Ha Tonorpadii, ki BUHUKaTb Bins
nepeLUKoA, AOBINMbHOI reoMeTpii BHACMIAOK NOPYLUEHHS MPUPOAHOr0 MOMEKYAPHOro MOTOKY CTPaTUAIiKy0OHOi KOMMOHEHTN Ha HEMPOHMWK-
Hilh NOBEPXHi.

MeTa gocnigxeHHs. MeToto poboTy € YACMOBUI aHarni3 AMHaMIKM Ta CTPYKTYpW Tedii, iHAyKOBaHOI ANdYy3ielo Ha HEPYXOMUX ne-
pelukofax, 3aHypeHux y CTIKO cTpaTudikoBaHe cepefoBuLLe, — Ha MOXUANIN NNACTUHI, KNMHOMOAIOHIN nepeLukoai, AUCKY, KpyroBomy
uuniHapi. OTpuMaHi YucnoBi pesynbTaTy NMOPIBHIOKTLCS 3 HASIBHUMW aHaNIiTUMHUMM A EKCNIePUMEHTaNbHUMU AaHUMU.

MeToguka peani3auii. [locTaBneHa 3agava po3B’si3yeTbCA YNCENBHO 3 BUKOPUCTAHHSM OBOX Pi3HMX MigxoAis, o 6a3yioTbcs Ha
MeToAax CKIHYEHHUX Pi3HULb i CKiHYeHHMX 06’emiB. MNMepLunii Niaxia peanisoBaHo y cneujianbHO po3pobneHnx NporpamMmHUX Kogax Ha MoBi
nporpamyBaHHsa Fortran. Opyruii 6a3yeTbcs Ha po3B’sidyBadax, Gibniotekax i yTunitax BnacHoi po3pobku obumcnoBarnbHOrO naketa
OpenFOAM 3 BigKp1TUM BUXIGHMM KOAOM i3 BUKOPUCTAHHSAM MOBM NporpamyBaHHs C++.

PesynbTatn pocnimkeHHsA. lpoBeaeHi YMCNOBi po3paxyHKN BUSIBUNWN HAsBHICTb CKNagHoi b6araTopiBHEBOI CMCTEMW KOMMEHCa-
LIMHUX LMPKYNAUIRHUX Tedir, ki OpMYTbCA HAaBKOMO HEPYXOMUX MepeLlKkos, CTPYKTypa SIKMX iICTOTHO 3anexuTb Big MOSMOXEeHHs Tina
BiHOCHO rOpu30HTY. HambinbLL iHTEHCMBHI | NPOTSKHI BUCOKOTPaAi€HTHI rOpu30oHTanbHi NpoLLapku, Wo NPUMMUKaTb 40 FOCTPUX KPOMOK
abo noniociB NepeLuKo, YiTKO NMPOornsaaloTbCa K Y YMCIIOBMX po3paxyHKax, Tak i B mabopaTopHux ekcrniepumeHTax. Tedii, iHAyKkoBaHi
andysieto, PopMyTb IHTEHCUBHI 30HM AediunTy TUCKy Ging KPOMOK nepeLukoa, siki BianosiganbHi 3a reHepadito NponyrbCUBHOMO Me-
XaHiamy, LIO NpUBOAWUTL A0 CaMOpyXy Tifl HEWTPanbHOI NaBy4OCTi B HENEPEPBHO CTPaTU(IKOBaHIN PiaunHi (ropu3oHTanbHe nepemilleH-
HS CUMETPUYHOTO KIHa, 06epTaHHSA NOXUIOI NNacTUHM TOLO).

BucHoBku. Teuii, iHgykoBaHi audysieto, — gyxxe nowmpeHe sBuLle B Gionorii, MeguumnHi, NPUPOAHMX CUCTEMAX, OCKINbKU Taki Te-
Yii HEeMUHYYe BUHMKaIOTb Yy OyAb-SKii HEOAHOPIOHIN PiaVHI (PiIBHOMaHITHI PO34MHK, cycneHsii, cymili Towo). HaBkono nepewkoaun dop-
MyIOTbCA cknagHi 6araTopiBHEBI LMPKYNALIAHI Tevii, CTPYKTypa SKux LWe Oinblu yCKNaAHIETLCA 3 MOYAaTKOM CaMopyxy Tina nig gieto
nponynbcuBHKX cun. Mpu Lpomy BiabyBaeTbCs iHTEHCUIKALIS NpoLeciB NepeMillyBaHHsS PO34YMHEHUX PEYOBUH, AOMIilok abo 3Baxe-
HUX YaCTMHOK, SKi € HEBIA'€MHMM CKNaAHUKOM PiAVH Y NPUPOAHUX CUCTEMAX.

KnroyoBi cnoBa: monekynsipHa avdysis; cTpatudikoBaHa piavHa; iHaykoBaHi Audysieto Tedii; caMopyx Tin; MeTon CKiHYEHHMX
ob’emiB.

#A.B. 3arymeHHbIN

MOZENVNPOBAHWE MONEKYNAPHON ONd®Y3UU B HEOQHOPOOHOW CPELE

Mpobnematnka. CoBMECTHOE BMUSHWE HEOOHOPOAHOCTW CPeAbl M BHELHWUX AUMHaMUYeckux daktopoB (rpaBuTauus 3emnu,
3MNEeKTPOMarH1THble CUnbl, rnobansHoe BpalleHne 1 Ap.) MOXeT NPUBOAUTL K MOSIBMEHMIO PSAa cneunduyecknx ABMKEHWUI XnaKocTen
B MPUPOAHBIX CUCTEMAX Aaxe B OTCYTCTBME UMCTO MEXaHU4Yeckux npuymH. Cpeamn HUX — Tak Ha3blBaeMble TEeYEHWs!, NHOYLMPOBaHHbIe
anddysmert Ha Tonorpaun, KOTOpble BO3HMKAIOT OKOMO NPEnsATCTBUIA NPOU3BOSIbHON reoMeTpun BCNeACTBNE HApYyLUEHUs eCTeCTBEH-
HOro MOSIEKYNSIPHOIO NMOTOKa CTPATUULIMPYIOLLIE KOMMOHEHTbLI HAa HEMPOHULIAEMOIN NOBEPXHOCTMU.

Llenb uccnepgoBaHums. Lienbio paboThbl SBASIETCS YUCNEHHBIN aHanM3 AMHAMUKN U CTPYKTYPbl TEYEHUs, MHOYLMPOBAHHOIO And-
dy3unert OKoro HEMOABMXKHBIX MPEMNATCTBUM, NOTPYXKEHHBIX B YCTOWYMBO CTPATUMULMPOBAHHYIO Cpedy, — OKOMIO HaKIMOHHOMN NNacTuHBbI,
KIMUHOBWAHOIO NPensaTCTBUSA, AWUCKA, KPYroBoro LmnmHapa. MonyyeHHble YMcrneHHble pesynbTaThl CPaBHUBAKOTCS C MMEIOLLMMUCS aHa-
NUTUYHECKUMM 1 BKCTIEPUMEHTAbHBIMU AaHHBIMU.

MeToauka peanusaumm. MNocTaBneHHasa 3agava peLaeTcs YNCMEHHO C UCMOMb30BaHNEM ABYX Pa3NNYHbIX MOAXOA0B, OCHOBaH-
HbIX Ha MeToAax KOHEYHbIX pa3HOCTeW 1N KOHeYHbIX 06BbeMOB. NepBbili NOAXOA peanu3oBaH B creumansHo pa3paboTaHHbIX NporpaMm-
HbIX KOoAax sidblka nporpammunpoBaHust Fortran. BTopon ocHOBaH Ha peluatensx, 6ubnuorekax n yTunutax cobCcTBEHHON pa3paboTku
BbluncnuTensHoro naketa OpenFOAM ¢ OTKpbITEIM MCXOAHBIM KOAOM C UCMOMb30BaHNEM Si3blka MporpammupoBaHns C++.

Pe3ynbTaTbl nccnegoBaHus. [poBeeHHble YNCTEHHbIE pacyeTbl BbIABUIM HanM4ne CrioXHOW MHOrOYPOBHEBOW CUCTEMbI KOM-
NEeHCaLMOHHBIX LIMPKYMALMOHHBIX TEYEHWI, (hOPMUPYIOLLMXCA BOKPYr HEMOABWXHOIO MPENSTCTBUS, CTPYKTYpa KOTOPbIX CyLLECTBEHHO
3aBUCUT OT €ro MOroKeHNst OTHOCUTENBHO ropu3oHTa. Hanbonee MHTEHCUBHBIE M MPOTSXXEHHbIE BbICOKOrPaANEHTHbIE FOPU30OHTasbHbIE
NPOCMONKN, NPUMBIKaIOLLME K OCTPbIM KPOMKaM MW nomnocam NpensaTCcTBUi, YeTKO NPOCMaTpUBaoTCA Kak B YNCMEHHBIX pacyeTax, Tak u
B NabopaTopHbIX 3KCMepuMeHTax. TeyeHusi, MHOAyumpoBaHHble Anddy3nen, hopMUPYIOT UHTEHCUBHbIE 30HbI AeduuuTa AaBneHUs
OKOIO KPOMOK NPEenATCTBUS, KOTOPble OTBETCTBEHHbI 3@ reHepaLuio NPonyfbCUBHOTO MeXaHU3Ma, NMPYBOASALLETO K CAMOABMKEHNIO Ter
HelTpanbHON NNaBy4ecTV B HEMpepbIBHO CTPaTUULMPOBAHHON XWAKOCTU (FTOPU3OHTanbHOe nepemelleHne CUMMETPUYHOrO KIuHa,
BpaLLeHNe HaKIOHHOW NNacTuHbl U Ap.).

BbiBoabl. TeyeHns, HAYLMPOBaHHbIE AN dY3neN, — LUIMPOKO pacnpocTpaHeHHoe siBfeHne B Bronornm, meguumHe, NpupoaHbIX
cuctemax, NocKosbKy Taknue Te4eHUst Hen3bexHO BO3HWKaIOT B MoboV HEOAHOPOJHOM XUAKOCTH, BKIOYAs pasnuyHble pacTBOpbI, Cyc-
neH3unmn, cmecu 1 np. Bokpyr npensTcTBus (hOPMUPYIOTCSA CIOXHbBIE MHOTOYPOBHEBbLIE LIMPKYNALMOHHBIE TEHYEHWS, CTPYKTYpa KOTOpPbIX
ellle Gonee yCcrnoxHAETCS C Ha4yarom CamMOABMKEHNS Tena noA AencTBreM hopMUPYIOLLECS NPOMYNbCUBHONM cunbl. MNpu aToM npouc-
XOAUT MHTEHCUUKALMA NPOLECCOB NepeMeLlMBaHNA PacTBOPEHHBIX BELLECTB, NPUMECEN Ui B3BELLEHHbIX YacTuLl, ABMAIOLLMXCA He-
OTbEeMIIEMOV COCTaBHOM YaCTb XMUAKOCTEN B MPUPOLHbBIX CUCTEMAX.

KnioueBble crnoBa: mosnekynspHas Auddysns; cTpaTurLMpoBaHHas XUOKOCTb; MHAYLMPOBaHHbIe Anddy3nel TeYeHus; camo-
[ABWXEHNE TeN; MeToA KOHEYHbIX 06 bEMOB.
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