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TRAINING DATA EXPANSION AND BOOSTING OF CONVOLUTIONAL NEURAL
NETWORKS FOR REDUCING THE MNIST DATASET ERROR RATE

Background. Due to that the preceding approaches for improving the MNIST image dataset error rate do not have a
clear structure which could let repeat it in a strengthened manner, the formalization of the performance improvement
is considered.

Objective. The goal is to strictly formalize a strategy of reducing the MNIST dataset error rate.

Methods. An algorithm for achieving the better performance by expanding the training data and boosting with en-
sembles is suggested. The algorithm uses the designed concept of the training data expansion. Coordination of the
concept and the algorithm defines a strategy of the error rate reduction.

Results. In relative comparison, the single convolutional neural network performance on the MNIST dataset has
been bettered almost by 30 %. With boosting, the performance is 0.21 % error rate meaning that only 21 handwritten
digits from 10,000 are not recognized.

Conclusions. The training data expansion is crucial for reducing the MNIST dataset error rate. The boosting is inef-
fective without it. Application of the stated approach has an impressive impact for reducing the MNIST dataset error

rate, using only 5 or 6 convolutional neural networks against those 35 ones in the benchmark work.
Keywords: MNIST; convolutional neural network; error rate; training data expansion; boosting.

Introduction

The MNIST (Mixed National Institute of Stan-
dards and Technology) database is widely used for
training and testing in the field of machine lear-
ning [1, 2]. It consists of 70,000 images of handwrit-
ten digits along with the sets of the corresponding
labels. There are only 10 image classes labeled as 1 to
10 implying digits “0” to “9”. All the MNIST gray-
scale 28x28 images are represented as 28x28x70000
array. The markers of data destined either for
training or testing are gathered into a separate set.
The first 60,000 images are for training, and the
rest is used in testing.

The MNIST image dataset is a widespread
benchmark dataset. A number of scientific papers
have been published attempting to achieve the
lowest error rate [2—4]. As of November 2016, the
lowest error rate is 0.23 % [3, 5, 6]. It is achieved
using a committee of 35 convolutional neural net-
works (CNNs) having the same architecture of
6 layers [5]. The lowest error rate achieved with a
single neural network classifier is 0.35 %, where the
6-layer deep neural network (5-layer perceptron)
was used [7]. Those are about a “near-human per-
formance” on the MNIST database [5]. However, it
is still aimed at to be improved for the purpose of
raising standards for the modern machine vision.

Problem statement

Any of the preceding approaches for improv-
ing the MNIST image dataset error rate does not

have a clear structure which could let repeat it in a
strengthened manner. Each attempt is an indepen-
dent description of the results, rather than a method
to achieve them. The only common idea is to apply
CNN classifiers bringing the best performance and
an expansion of training data. Therefore, an appro-
ach to reduce the MNIST dataset error rate further
should be stated. The goal is to strictly formalize a
strategy of the reduction. This goal is going to be
reached after fulfilling the following tasks:

1. Construction of a single CNN whose per-
formance on the MNIST dataset shall be better
than 0.35 % error rate.

2. Construction of a series of additional CNN5s
having performance approximately close to the best
one for a single CNN classifier.

3. Making a CNNs’ ensemble whose perform-
ance shall be better than 0.23 % error rate.

4. Formalization of how to achieve the better
performance by expanding the training data [5] and
boosting [8, 9].

Training data expansion for a single CNN

CNNs are excellent for image classification,
whatever the image size is. Construction of a CNN
begins from its architecture depending on the image
size. One of the known CNN architectures for the
MNIST dataset consists of four convolutional layers
(ConvLs), two maximum pooling layers (MPLs), a
rectified linear unit layer (ReLU), and a softmax

layer (SML). Denote these layers by {C; }j‘;l, {P, }%:1 ,
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R and §, respectively. Then the primal architecture
spoken about is

¢>A->CG->PA->CG->R->C->S (1)

A great deal of experiments proves that nei-
ther increasing number of filters in ConvLs, nor
the training data expansion helps to reliably achieve
the 0.4 % error rate by the architecture (1). Never-
theless, it still can be made more robust even by
the same number of ConvLs and MPLs. For in-
stance, two additional ReLLUs can be inserted fol-
lowing the starting two ConvLs:

C,>R->PF->C >R
>P->CG->R->C->S. 2)

Nevertheless, the architecture (2) cannot break the
0.35 % error rate. Inserting DropOut layers (DOLs)

{D;} as

¢->D->R->A->C->D >R
>P>C->Dy>R—>C > S 3)

makes it much better [10], but it is not sufficient.

Obviously, a deeper CNN is needed to break
the existing top performance. This is done with ad-
ding one more ConvL followed with a DOL and a
ReLU before the two ending layers:

3
{Cj-—>Dj—>Rj—>Pj}j:1—>C4
> D, >R —>C;—S. (4)

This 17-layer CNN itself requires the training data
expansion because it contains four DOLs and three
MPLs, whereas the CNN (3) containing those three
and two ones cannot be sufficiently trained on
60,000 images.

The initial training data are in the set
(F,}°9000 " where F, is a 28x28 matrix representing
an image. Each matrix is processed in order to scale,
rotate, and shift the corresponding image. Firstly,
the image is scaled with a scale related factor o

via a scaling procedure s [11]:

Fz'<sc> = S(Fi’ Gscale)' (5)

scale

The scaled image F5¢ by (5) is then rotated with

a rotation related factor o via a procedure r [11]:

rotate
ScRt S
Fi< RO = r(Fi< c>’ Grotate)' (6)

Finally, the image F5RY by (6) is shifted horizon-
tally and vertically by numbers of pixels which are

defined with a shift related factor ogy,;; via a pro-
cedure £ [9, 11]:

Fi(SCRtSf) _ h(Fi(SCRt)’ Gshift)- (7)
Although the factors

Ocales cyrotate, Ghift (8)

are varied simultaneously, the procedures (5), (6),
and (7) are repeated for a few times by increasing
the values (8). This allows to expand the MNIST
training set more than twice. If the values (8) are
increased for Q times then, instead of just the im-
age (7), it gives Q distorted images {F,.ﬁISCRtS”}qQ:l.

Thus the initial training data set is Q +1 times ex-
panded: now it is the set
ScRiSf 6
{F;, {FeRSDYC 1000, ©)

A useful form of training data is the average
image subtraction. The set {Fi},-sff)oo is already for-

med so. The average image

F. 4 F(ScRSf)
o=

F = 10
3 (10)
by
~ | 60000
F,=—— F. 11
60000 Z‘ l an
and
SeRest) _ 1 63000 0 F{SCRSh) 1

is subtracted from the newly distorted images (Fig. 1)
and from the initial dataset as well, and the ready
expanded training data set (ETDS) is

{Fi _ F’ {Fi<qSCRtSf) _ F}qQZl }1621000
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Fig. 1. A mini-subset of the initial training data images (upper
line series) and the newly distorted images by the pro-
cedures (5)—(7), after the average (10) subtraction
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Every time the set (13) can be produced different
by changing Q or changing the maximal values of
the factors (8).

Just with ETDS (13) by Q =5, giving 360,000
training images, four CNNs (4) whose performance
is better than 0.35 % are obtained. Their ConvLs
have the same numbers of filters (50, 100, 500, 1000,
and 10 before its SML), except the CNN whose
ConvLs have 40, 80, 500, 1000, 2000 (before
SML, although 10 filters here is theoretically suffi-
cient) filters, respectively. The performance of this
2000-before-SML CNN achieved in 18 epochs is
0.31 % error rate. The other three CNNs with 50
filters in the starting ConvL have the following error
rate: 0.33 % (in 28 epochs), 0.32 % (in 34 epochs),
and 0.30 % (in 67 epochs).

Three of those four CNNSs in their uniform
combination (the uniform ensemble) produce 0.26 %
error rate. The same holds when the combination is
of all the four CNNs. Any other ensembles of those
four classifiers do not perform better than at that
rate. So, the training data must be expanded further.

The further expansion is fulfilled by another
eight independent distortion types (Fig. 2):

1) linear conformal distortion (similar to the
distortions described above but much severer);

2) affine distortion;

3) projective distortion;

4) polynomial distortion;

5) piecewise linear distortion;

6) sinusoid distortion;

7) barrel distortion;

8) radial pin cushion distortion.
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Fig. 2. A mini-subset of the initial training data images (upper
line series) and the eight independent distortion types
applied to them

NN

Let the transformation 7, execute the corres-
ponding m-th distortion type in the list above,
m =1,8. This transformation can be applied by vary-

ing 1 to 12 its parameters gathered in the set 7. If
it is executed for N times then, at the n-th version
T, of this set, a new image is

F,) =1,(F, T,) by n=1,N and m=18. (14)

imn
The average image

F, +
2

F= (15)

by (11) and
~ 1 60000
(+) _

RV TTYYr— (16)
480000 - N

8 N
> 2 Fiom
i=l m=ln=1
is subtracted from every image (14). Thus an alter-
native ETDS is

{F, — F, {E},, - Bl 000

imn n=l1

a7)

Even if the eight transformations are executed
once, i. e. N=1 the ETDS (17) has 540,000 images.

Before trying the set (17), a resuming-training
technique can be applied [12]. This implies to con-
tinue training a CNN on a differently produced
ETDS (13) or ETDS (17). With ETDS (13), three
additional CNNs perform at the following error
rate: 0.29 % (in 68 epochs), 0.30 % (in 69 epochs),
and 0.27 % (in 74 epochs). Their uniform ensemble
performs at 0.24 % error rate. Any other ensembles
included the four previously obtained CNNs do not
perform better. Hence, we need the set (17), any-
way (Fig. 3).
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Fig. 3. A concept of the training data expansion
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It is not necessary to involve the whole
set (17) into training. Just involving only 180,000
entries, another two promising CNNs are obtained
performing at the following error rate: 0.29 % (in 77
epochs) and 0.27 % (in 82 epochs). Thus, the trai-
ning data expansion allows as to get a better error
rate, as well as to train more good-performing CNNs
by switching between different ETDSs and the sub-
sequent resuming-training.

Ensembles of CNNs

The uniform ensemble of those nine CNNs
(see their tags in Table 1) performs at 0.26 % error
rate. Amazingly enough, but such an ensemble per-
forms even worse than the mini-ensemble of just
three CNNs [13]. A solution is to try any uniform
ensembles of those nine CNNs. That is, to search
through all possible ensembles of 2, 3, ..., 9 CNNs.
Eventually, the best uniform ensemble of CNNs #1,
#7, and #9 gives 0.22 % error rate.

Table 1. Tags of CNNs and their performance on the
MNIST testing dataset

CNN
(epochs of training) # Error rate, %
74 1 0.27
82 2 0.27
77 3 0.29
68 4 0.29
67 5 0.30
69 6 0.30
18 7 0.31
34 8 0.32
28 9 0.33

When trying non-uniform ensembles, their
weights are searched with the step 0.1, which is ac-
ceptable. Finally, four ensembles are found per-
forming at 0.21 % error rate (Table 2). The ensem-
bles #2, #3, and #4 include the same CNNs, al-
though with slightly different weights.

Table 2. Tags and weights of CNNs whose ensemble performs at 0.21 % error

rate on the MNIST testing dataset

It is not guaranteed that this error rate can be
improved further just by adding new CNNs. This is
because properties of the used ETDSs bettering the
generalization may be exhausted at the stage.

The better performance by ETDS and boosting

Fig. 4 explains an algorithmic way for achiev-
ing the better performance by expanding the trai-
ning data and boosting with ensembles. The perfor-
mance of a single CNN shall always be worse than
that of an ensemble. Similarly, the performance of
a uniform ensemble is expected to be improved by
boosting with non-uniform weights.

Start

v
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Train a CNN

Performance
is satisfactory
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True Number of CNNs
is sufficient

Search through all
possible uniform
ensembles

Performance

is satisfactory

True False

Try searching|
through
non-uniform
ensembles

Performance

is satisfactory

Fig. 4. Boosting an ensemble of CNNs trained on the expanded
training data

The algorithm in Fig. 4 fits any

image classification problem. Ac-

Ensemble #1 Ensemble #2 Ensemble #3 Ensemble #4 cording to Fig. 3, the training data
CNN # | Weight | CNN # | Weight | CNN # | Weight | CNN # | Weight | expansion can be fulfilled as many

1 0.3 1 03 1 0.2 1 0.2 times as needed. So the subsequent

) 03 4 0.1 4 0.2 4 0.1 efficient boosting is realizable.

5 0.2 5 0.2 5 0.2 5 0.2 Discussion

6 0.1 6 0.1 6 0.1 6 0.1

9 0.1 7 0.1 7 0.1 7 0.2 In relative comparison, the

9 0.2 9 0.2 9 0.2 single CNN performance on the
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MNIST dataset has been bettered almost by 30 %.
Nevertheless, the improvement is just 0.08 % by
the absolute reckoning. The absolute improvement
on the ensembles from Table 2 is even smaller —
just 0.02 %, although it is about 9.5 % by the ratio
of 0.23 % to 0.21 % error rate. However, the per-
formance at 0.21 % error rate means that only 21
handwritten digits from 10,000 are not recognized.
Practically, this is really the human performance.

Conclusions

nents. The first is the crucial one — the training
data expansion. Without it, the boosting which is
the second component, is ineffective. Coordination
of these components formalized in Figs. 3 and 4 is
a strategy of the error rate reduction. Application of
the stated approach has a pretty impressive impact
for reducing the MNIST dataset error rate. Besides,
the efficient boosting ensemble includes only 5 or 6
CNNs (Table 2) against those 35 CNNs in the
work [5]. This also shortens the time of classifica-
tion. In this way, further work is going to be fo-

cused on acceleration of larger image classification.
The stated approach for reducing the MNIST

dataset error rate relies on two principal compo-
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B.B. PomaHtok

3BIMbLEHHA OBCATY AAHUX HABYAHHA TA BYCTUHI 3rOPTKOBUX HEMPOHHUX MEPEX ANSA 3HUXKEHHA PIBHA
MOMWUITOK BAHKY JAHUX MNIST

Mpobnemartuka. Ockinbkun nonepeaHi Nigxoam A0 MOKPALLEHHS PiBHA NoMuok 6aHky 3o6paxkeHb MNIST He MatoTb YiTKOI CTPyK-
Typw, sika morna 6u 6yTu YiTKo BigTBOpEHa, po3rnagacTbes hopmanisalis NokpaLLleHHst NPOAYKTUBHOCTI.

MeTa gocnigxeHHs. MeToto poboTu € cTpora hopManisauis cTpaterii 3HWKEeHHs1 piBHS nomMunok 6aHky gaHmux MNIST.

MeToauka peanisauii. [IponoHyETbCA anropuTM AOCATHEHHS KpaLloi MPOAYKTUBHOCTI 3@ AOMOMOro 36inblueHHs obcAry aaHux
HaBYaHHA Ta BYCTMHrYy. ANropuTM BUKOPUCTOBYE PO3pOGIEHy KOHLENUilo 36inblueHHst ob6csAry aaHux HaBvaHHs. KoopauHauis uiei KoH-
uenuii Ta anropMTMy BU3Ha4Yae CTPATETitO 3HKEHHS PiBHS MOMMITOK.

PesynbTatn gocnigxeHHs. Y BifHOCHOMY MOPIBHSHHI NPOAYKTUBHICTb OAHIEl 3ropTKOBOI HEMPOHHOI Mepexi Ha BaHKy AaHux
MNIST nokpaiieHa maixe Ha 30 %. 3a gonomMoroto BYCTUHIY NPOAYKTUBHICTb CTaHoBUTL 0,21 % — He po3nisHaeTbes nuwwe 21 pykonuc-
Ha umdpa 3 10000.

BucHoBku. 36inbLueHHst 06CAry aHnx HaBYaHHSA € BU3HAYanbHUM AN 3HWKEHHS piBHA nomunok 6axky aaHux MNIST. bes ubo-
ro 6ycTvHr HeedeKTUBHWIA. 3acTOCyBaHHA BWKMaAEHOro NiAXody Mae BUPA3HWIA BMIMB Ha 3HWKEHHSI PIBHA NMOMWMOK GaHKy AaHWX
MNIST npu BukopucTaHHi nuwe 5 abo 6 3ropTKOBMX HEMPOHHNX Mepex NpoTu 35 B eTanoHHi poboTi.

Kntovosi cnoa: MNIST; 3ropTkoBa HeipoHHa Mepexa; piBeHb NOMUIOK; 36iNnbLlUeHHs 06CAry AaHnx HaBYaHHS; BYCTUHT.

B.B. PomaHok

YBEMWYEHVE OBBEMA OAHHBLIX OBYYEHUA W BYCTUHI CBEPTOYHbIX HEWPOHHbLIX CETEW ONA CHVDKEHWSA
YPOBHA OLLMBOK HABOPA OAHHbBIX MNIST

Mpo6nemaTtuka. MNockonbKy npedpigyliMe noaxodbl K yryyleHW0 YPOBHSI owmbok Habopa daHHbix MNIST He umeloT yeTkon
CTPYKTYpbl, KOTOpas Morna 6bl ObITb YETKO BOCCO3[jaHa, paccMaTtpuaeTcs hopManmaanms yryylleHs Npou3BoaUTENbLHOCTH.

Llenb nccneposanus. Lienbto paboThl sBNsieTcs cTporas doopmanuaauns CTpaTeruy CHWKEHUsT YpOBHS oGOk Habopa AaHHbIX
MNIST.

MeToguka peanusauuu. [pegnaraeTcs anropuTM SOCTMKEHUS NyYlle NPON3BOAMTENBHOCTU C NMOMOLLbIO YBENUYEHUS 06beMa
OaHHbIX 06y4eHusi u BycTuHra. AnNropmMTM Ucnonb3yeT pa3paboTaHHyH KOHLENUMIO yBeENMYeHus obbema AaHHbIX 06yveHunsi. KoopavHa-
LiUsi 3TON KOHLEMNLUMN 1 anroputmMa onpeaensieT CTpaTermio CHKEHUSI YPOBHS OLLMGOK.

Pe3ynbTaTbl uccnegoBaHus. B 0THOCUTENBHOM CPaBHEHWUM MPOU3BOAUTENBHOCTb OOHOW CBEPTOYHOM HEMPOHHOW CeTU Ha Ha-
6ope gaHHbix MNIST yny4wexa noytn Ha 30 %. C nomolbto GycTuHra npomnssoauTenbHocTb coctaensieT 0,21 % — He pacnosHaeTcs
nuwb 21 pykonucHas uudpa 13 10000.

BbiBogbl. YBennyeHne o6bemMa AaHHbIX 00ydYeHUs1 ABMSETCA ONpeaensiownm anst CHUKEHUs1 YpoBHA owmnbok. bes atoro 6yc-
TUHT HeaeKTUBEH. [TpUMEHEHNE U3MOXEHHOIO NOAXO0AA OKa3blBAET Bblpa3nUTENbHOE BMUSHNE HA CHUXEHWE YpOBHS owmnbok Habopa
AaHHbix MNIST npu ncnonb3oBaHun nNub 5 Unn 6 CBEPTOYHBLIX HEMPOHHbLIX ceTer NpoTuB 35 B aTanoHHou paboTe.

KnioueBble cnoBa: MNIST; cBepTouHas HEMPOHHAsA CeTb; YPOBEHb OLUMGOK; YBENMYEHWE 06 beMa AaHHbIX 0GYYeHNsI; BYCTUHT.
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