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PROCESSING UNCERTAINTIES IN MODELING NONSTATIONARY TIME SERIES
USING DECISION SUPPORT SYSTEMS

Background. Forecasting of nonlinear nonstationary time series (NNTS) is important problem in economics, market-
ing, industry, ecology and many other branches of science and practical activities. Successful solution of the problem
requires development of modern computer based decision support systems (DSS) capable to generate reliable esti-
mates of forecasts in conditions of uncertainty of various type and origin.

Objective. The purpose of the research is as follows: development of requirements to the modern DSS and their for-
mal representation; analysis of uncertainty types characteristic for model building and forecasting; selection of tech-
niques for taking into consideration of the uncertainties; and illustration of the system application to solving the
problem of forecasts estimation for heteroskedastic NNTS using statistical data.

Methods. To reach the objectives stated the following methods were used: systemic approach to statistical data analy-
sis; statistical approach to identification and taking into consideration of possible uncertainties; Kalman filtering
techniques; Bayesian programming approach and statistical criteria of model adequacy and quality of forecasts.
Results. Formal description of the DSS is provided, and requirements to its development are given; the classes of
mathematical methods necessary for DSS implementation are proposed; some approaches to formal taking into con-
sideration of probabilistic, statistical and parametric uncertainties are discussed; and illustrating example of the DSS
application is considered.

Conclusions. Systemic approach to DSS constructing for solving the problem of nonlinear nonstationary time series
forecasting turned out to be very fruitful. Using the system proposed it is possible to take into consideration various
uncertainties of probabilistic, statistical and parametric type, and to compute high quality estimates of short and me-
dium term forecasts for NNTS. The approach proposed has good perspectives for the future improvements and en-
hancement.

Keywords: time series forecasting; systemic approach; probabilistic, statistical and parametric uncertainties, decision

support system.
Introduction

Analysis of nonlinear nonstationary time se-
ries (NNTS) is an urgent problem not only for fi-
nancial organizations and companies but for all in-
dustrial enterprises, small and medium business,
investment and insurance companies etc. Adequate
models of NNTS and the forecasts generated with
them help to take into consideration a set of vari-
ous influencing factors and make objective mana-
gerial decisions. Another purpose of the studies is in
estimating possible risks using forecasts of NNTS
volatility. There are several types of NNTS that
could be described with mathematical models in the
form of appropriately constructed equations or pro-
bability distributions. Among them are processes with
deterministic and stochastic trends, and heteroske-
dastic processes. As of today the following mathe-
matical models are widely used for describing dy-
namics of NNTS: linear and nonlinear regression
(logit and probit, polynomials, splines), autoregres-
sive integrated moving average (ARIMA) models,
autoregressive conditionally heteroskedastic models

(ARCH), generalized ARCH (GARCH), dynamic
Bayesian networks, support vector machine (SVM)
approach, neural networks and neuro-fuzzy tech-
niques as well as combinations of the approaches
mentioned [1—3].

All types of mathematical modeling usually
need to cope with various kinds of uncertainties re-
lated to statistical data, structure of the process
under study and its model, parameter uncertainty,
and uncertainties relevant to the models and fore-
casts quality. Reasoning and decision making are
very often performed with leaving many facts un-
known or rather vaguely represented in processing
of data and expert estimates. To avoid or to take
into consideration the uncertainties and improve
this way quality of the final result (processes fore-
casts and decisions based on them) it is necessary
to construct appropriate computer based decision
support systems (DSS) for solving multiple specific
problems.

Selection and application of a specific model
for process description and forecasts estimation de-
pends on application area, availability of statistical
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data, qualification of personnel, who work on the
data analysis problems, and availability of appro-
priate applied software. Better results for estimation
of processes forecasts is usually achieved with ap-
plication of ideologically different techniques com-
bined in the frames of one computer system. Such
approach to solving the problems of quality fore-
casts estimation can be implemented in the frames
of modern decision support systems (DSS). DSS
today is a powerful instrument for supporting user’s
(managerial) decision making as far as it combines
a set of appropriately selected data and expert es-
timates processing procedures aiming to reach final
result of high quality: objective high quality alter-
natives for a decision making person (DMP). De-
velopment of a DSS is based on modern theory
and techniques of system analysis, data processing
systems, estimation and optimization theories, ma-
thematical and statistical modeling and forecasting,
decision making theory as well as many other re-
sults of theory and practice of processing data and
expert estimates [6—8].

The paper considers the problem of DSS con-
structing for solving the problems of modeling and
estimating forecasts for selected types of NNTS
with the possibility for application of alternative
data processing techniques, modeling and estima-
tion of parameters and states for the processes un-
der study. One of such widely used parameters in
economic and financial sphere is volatility.

Problem formulation

The purpose of the study is as follows: 1) de-
velopment of requirements to the modern decision
support systems and their formal representation;
2) analysis of uncertainty types characteristic for
model building and forecasting; 3) selection of tech-
niques for taking into consideration of the uncer-
tainties; 4) selection of mathematical modeling and
forecasting techniques for NNTS — heteroskedastic
processes; 5) illustration of the system application to
solving selected problem of forecasts estimation for
heteroskedastic NNTS using appropriate statistical
data.

Requirements to modern DSS

Modern DSS are rather complex multifunc-
tional (possibly spatially distributed) highly deve-
loped information processing computing systems with
hierarchical architecture that corresponds to the na-
ture of decision making by a decision making per-
son. To make their performance maximum useful

and convenient for users of different levels (like
engineering and managerial staff) they should sa-
tisfy some known general requirements. Formally
DSS could be defined as follows:

DSS ={DKB, PDP, ST, MSE,
MPE, FGP, DQ, MO, FEQ, AQ},

where DKB is data and knowledge base; PDP is a
set of procedures for preliminary data processing;
ST is a set of statistical tests for determining pos-

sible effects contained in data (like integration or
heteroskedasticity); MSE is a set of procedures for
estimating of mathematical model structure; MPFE
is a set of procedures for estimation of mathemati-
cal model parameters; FGP are forecasts genera-
ting procedures; DQ, MQ, FEQ, AQ are the sets

of statistical quality criteria for estimating quality
of data, models, forecast estimates, and decision
alternatives.

Such systems should satisfy the following gen-
eral requirements that follow from the system
analysis principles: 1) contain highly developed bases
of data and knowledge: mathematical models con-
structing procedures; quality criteria for each type
of computing, and model selection rules; 2) to achie-
ve high quality of the final result the hierarchy of
the system functioning should correspond to the
hierarchic process of making decision by a human;
3) their interface should be based on the human
factors principles: user friendly, convenient and sim-
ple for use, as well as adaptive to users of vari-
ous levels (e.g.,engineering and managerial staff);
4) the system should possess an ability for learning
in the process of its functioning, i.e. accumulate ap-
propriate knowledge regarding possibilities of sol-
ving the problems of definite class; 5) an active use
of artificial intelligence data processing techniques,
helping to gradually transform the DSS into intelli-
gent one; 6) the organization aspects and techni-
ques for computing procedures should provide for
an appropriate rate of computing that corresponds
to the DMP requirements with regard to the rate of
generating alternatives and reaching the final result;
7) precision (quality) of computing should satisfy
preliminary established requirements by a user and
developer; 8) intermediate and final results of com-
putations should be controlled with appropriate sets
of analytic quality criteria, what would allow to
enhance significantly quality and reliability of the
final result (decision alternatives); 9) DSS should
generate all necessary for a user formats and types
of intermediate and final results representations with
taking into consideration the users of various le-
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vels; 10) the system should contain the means for
exchanging with data and knowledge with other in-
formation processing systems via local and/or global
computer nets; 11) to make the system functionality
complete and flexible DSS should be easily ex-
pandable with new functions regarding data proc-
essing, results representation and control with appro-
priate statistical criteria, model constructing and al-
ternatives generating.

Satisfaction of all the requirements mentioned
above provides a possibility for effective practical
application of the system developed and enhancing
general behavioral effect of the DSS as a whole for
a specific company or an enterprise within long
periods of time.

Basic mathematical tools for DSS

All mathematical tools and techniques hired
for development and implementation of DSS could
be divided in the two following groups: 1 — general
purpose tools that provide for implementation of the
system functions; and 2 — special purpose methods
and techniques that are necessary for solving spe-
cific problems regarding preliminary and basic data
processing, model constructing, alternatives gener-
ating, selecting the best alternative for further im-
plementation and forecasting of the implementation
consequences.

The group of the general purpose methods in-
cludes the following ones:

— data and knowledge collecting and editing
procedures;

— preliminary data processing techniques such
as digital filtering, normalization, imputation of mis-
sing values, detecting special effects such as regime
switching, seasonal effects, spikes, nonstationarity etc;

— the methods for accumulating information
regarding previous applications of DSS to problem
solving for the retrospective analysis and repetitive
use;

— computer graphics techniques;

— techniques for syntactic analysis to be used
in a command interpreter (language system of
DSS);

— methods for setting up necessary communi-
cations with other information processing systems
via local and global nets;

— logical rules to control the system functioning.

The set of the methods mentioned are to be
modified or expanded depending on a specific ap-
plication.

Selection of the application defined mathe-
matical methods for a DSS functioning depends on

a specific system application area, possible specific
problem statements regarding data processing, model
building, processes forecasting, and alternatives ge-
nerating. However, it is possible to state that in most
cases of DSS development it is necessary to use the
following mathematical methods:

— methods and methodologies for mathemati-
cal (statistical and probabilistic) modeling using sta-
tistical/experimental data and expert estimates;

— forecasts estimating techniques (including
risks estimation) on the basis of the models construc-
ted with possibilities for combining the forecasts
computed with different techniques;

— operations research optimization techniques
and dynamic optimization (optimal control) methods;

— the methods for forecasting/foresight of de-
cision implementation consequences;

— the sets of specific analytic (statistical) cri-
teria to control the processes of computations per-
formed at each stage of data processing, model con-
structing and alternatives generation aiming to reach
high quality of intermediate and final results.

All the methods and methodologies mentio-
ned are described with necessary completeness in
special modern literature. For example, time series
modeling and forecasting are presented in many re-
ferences, more particularly in [9, 10], and financial
risks modeling, evaluation and management is con-
sidered in a vast literature, say in [11, 12]. The task
for a DSS developer is in appropriate selection of
model classes, modeling and optimization techni-
ques, quality criteria as well as relevant methodo-
logies for appropriate organization of all computa-
tional procedures.

Coping with uncertainties

As it was mentioned above all types of ma-
thematical modeling usually need to consider vari-
ous kinds of uncertainties caused by data, informa-
tional structure of a process under study and its
model, parameter uncertainty, and uncertainties rele-
vant to the quality of models and forecasts. In many
cases a researcher has to cope with the following
basic types of uncertainties: structural, statistical and
parametric. Structural uncertainties are encountered
in the cases when structure of the process under
study (and respectively its model) is unknown or not
clearly enough defined (known partially). For exam-
ple, when the functional approach to model con-
structing is applied usually we do not know object
(or a process) structure, it is estimated with appro-
priate model structure estimation techniques: cor-
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relation analysis, estimation of mutual information,
lags estimation, testing for nonlinearities and non-
stationarity, identification of external disturbances
type etc. The sequence of actions necessary for iden-
tification, processing and taking into consideration
of uncertainties could be formulated as follows:

— identification and reduction of data uncer-
tainty;

— model structure and parameters estimation,;

— reduction of uncertainties related to the mo-
del structure and parameters estimation;

— estimation of forecasts and reduction of re-
spective uncertainties;

— selection of the best final result.

All the tasks mentioned above are solved se-
quentially (or in an adaptive loop) with appropriate-
ly designed and implemented DSS.

We consider uncertainties as the factors that
influence negatively the whole process of mathe-
matical model constructing, forecasts and possible
risk estimating and generating of alternative deci-
sions. They are inherent to the process being stu-
died due to incomplete or noise corrupted data, com-
plex stochastic external influences, incompleteness or
inexactness of our knowledge regarding the objects
(systems) structure, incorrect application of computa-
tional procedures etc. The uncertainties very often
appear due to incompleteness of data, noisy meas-
urements or they are invoked by sophisticated sto-
chastic external disturbances with complex unknown
probability distributions, poor estimates of model
structure or by a wrong selection of parameter es-
timation procedure. The problem of uncertainties
identification is solved with application of special
statistical tests and visual studying of available data.

As far as we usually work with stochastic data,
correct application of existing statistical techniques
provides a possibility for approximate estimation of
a system (and its model) structure. To find “the best”
model structure it is recommended to apply adap-
tive estimation schemes that provide automatic
search in a wide range of model structures and pa-
rameters (model order, time lags, and possible non-
linearities). It is often possible to perform the search
in the class of regression type models with the use of
information criterion of the following type [2]:

Nlog(FPE) = Nlog(Vy(0)) + Nlog(eri], (1)

where 0 is a vector of model parameters estimates;
N is a power of time series used; FPE is final pre-
diction error term; VN(Q) is determined by the sum
of squared errors; p is a number of model parame-

ters. The value of the criteria (1) is asymptotically
equivalent to the Akaike information criterion as
N — oo. As the amount of data, N, may be limi-

ted, then an alternative, the minimum description
length (MDL) criterion

MDL - log(N)

log (Vy(0)) + p—=2—
could be used to find the model that adequately
represents available data with the minimum amount
of information.

There are several possibilities for adaptive mo-
del structure estimation: (1) application of statistical
criteria for detecting possible nonlinearities and the
type of nonstationarity (integrated or heteroskedastic
process); (2) analysis of partial autocorrelation for
determining autoregression order; (3) automatic esti-
mation of the exogeneous variable lag (detection of
leading indicators); (4) automatic analysis of residual
properties; (5) analysis of data distribution type and
its use for selecting correct model estimation me-
thod; (6) adaptive model parameter estimation with
hiring extra data; (7) optimal selection of weighting
coefficients for exponential smoothing, nearest neigh-
bor and other techniques. The use of a specific adap-
tation scheme depends on volume and quality of da-
ta, specific problem statement, requirements to fore-
cast estimates etc.

The adaptive estimation schemes also help to
cope with the model parameters uncertainties. New
data are used to re-compute model parameter es-
timates that correspond to possible changes in the
object under study. In the cases when model is non-
linear alternative parameter estimation techniques
(say, MCMC) could be hired to compute alterna-
tive (though admissible) sets of parameters and to se-
lect the most suitable of them using statistical qua-
lity criteria.

Processing some types of stochastic uncertainties.
While performing practical modeling very often sta-
tistical characteristics (covariance matrix) of stochas-
tic external disturbances and measurement noise (er-
rors) are unknown. To eliminate this uncertainty op-
timal filtering algorithms are usually applied that pro-
vide for a possibility of simultaneous estimation of
object (system) states and the covariance matrices.
One of the possibilities to solve the problem is op-
timal Kalman filter. Kalman filter is used to find
optimal estimates of system states on the bases of
the system model represented in a convenient state
space form as follows:

x(k) = Ak, k ~1)x (k—1)+ Bk, k— D u(k—1) +w(k), (2)
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where x(k) is n-dimensional vector of system states;
k=0,1,2,... is discrete time; u(k— 1) is m-dimensio-
nal vector of deterministic control variables; w(k) is
n-dimensional vector of external random disturban-
ces; A(k,k —1) is (nx n)-matrix of system dynamics;
B(k, k- 1) is (n x m)-matrix of control coefficients.
The double argument (k,k — 1) means that the vari-
able or parameter is used at the moment &, but its
value is based on the former (earlier) data proces-
sing including moment (k& —1). Usually the matrices
A and B are written with one argument like A(k),
and B(k), to simplify the text. Obviously stationary
system model is described with constant parameters
like A, and B. As far as matrix A is a link between
two consequent system states, it is also called state
transition matrix. Discrete time k and continuous
time ¢ are linked to each other via data sampling
time 7;: f=kT,. In the classic problem statement
for optimal filtering the vector sequence of external
disturbances w(k) is supposed to be zero mean white
Gaussian noise with covariance matrix Q, i.e. the
noise statistics are as follows:

Elw(k)] =0 vk Elwk)w’ ()] =Q(k)d,;,

0, k=j .
Lk=j
Q(k) is positively defined covariance (nx n)-matrix.

The diagonal elements of the matrix are variances
for the components of disturbance vector w(k). Ini-
tial system state x is supposed to be known and the

measurement equation for vector z(k) of output va-
riables is described by the equation:

z(k) = H(k)x(k) + v(k), 3)

where §,; is Kronecker delta-function: 3, ={

where H(k) is (rx n) observation (coefficients) mat-
rix; v(k) is r-dimensional vector of measurement
noise with statistics:

E[v(k)] =0, E[v(k)v" (j)] = R(k),;,

where R(k) is (rx r) positively defined measurement
noise covariance matrix, the diagonal elements of
which represent variances of additive noise for each
measurable variable. The noise of measurements is
also supposed to be zero mean white noise se-
quence that is not correlated with external dis-
turbance w(k) and initial system state. For the
system (2), (3) with state vector x(k) it is necessary
to find optimal state estimate x(k) at arbitrary

moment k as a linear combination of estimate

x(k —1) at the previous moment (k—1) and the last

measurement available, z(k). The estimate of state
vector X(k) is computed as optimal one with minimi-

zing the expectation of the sum of squared errors, i.e.:

E[(x(k) - x(k))" (x(k) - x(k))] = min,  (4)

where x(k) is an exact value of state vector that
can be found as deterministic part of the state
equation (2); K is optimal matrix gain that is de-
termined as a result of minimizing quadratic crite-
rion (4).

Thus, the filter is constructed to compute op-
timal state vector X(k) in conditions of influence

of external random system disturbances and measure-
ment noise. Here uncertainty arises when we don’t
know estimates of covariance matrices Q and R.
To solve the problem an adaptive Kalman filter is
to be constructed that allows to compute estimates

of Q and R simultaneously with the state vector X(k).
Another choice is in constructing separate algorithm
for computing the values of Q and R. A convenient

statistical algorithm for estimating the covariance
matrices was proposed [11]:

R = % [B,+A'(B,-B,)(A™)],
Q=B, -R-ARAT,
where B, = E {[z(k) — A z(k - 1)][z(k) -Az(k - 1)]T};
B, = E {[z(k) — A’z(k - 2)][z(k) — A’z(k - 2)]T}.

The matrices Q and R are used in the opti-
mal filtering procedure as follows:

S(k) = AP(k-1)AT + Q; A(k) = S(k)[S(k) + R]*;
P(k) =[I - A(k)]S(k), k=0,1,2, ...,

where S(k) and P(k) are prior and posterior co-
variance matrices of estimates errors respectively;
the symbol “#” denotes pseudo-inverse; AT means
matrix transposition; A(k) is a matrix of intermedi-
ate covariance results. The algorithm was success-
fully applied to the covariances estimating in many
practical applications. The computation experiments
showed that the values of A(k) become stationary
after about 20—25 periods of time (sampling peri-
ods) in a scalar case, though this figure is growing
substantially with the growth of dimensionality of
the system under study. It was also determined that
the parameter estimators are very sensitive to the
initial conditions of the system. The initial condi-
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tions should differ from zero enough to provide
stability for the estimates generated.

Other appropriate instruments for taking into
consideration the uncertainties are fuzzy logic, neu-
ro-fuzzy models, Bayesian networks, appropriate types
of distributions etc. Some of statistical data uncer-
tainties such as missing measurements, extreme va-
lues and high level jumps of stochastic origin could
be processed with appropriately selected statistical
procedures. There exists a number of data imputation
schemes that help to complete the sets of the data
collected. For example, very often missing measure-
ments for time series could be generated with ap-
propriately selected distributions or in the form of
short term forecasts. Appropriate processing of jumps
and extreme values helps with adjusting data non-
stationarity and to estimate correctly the probabil-
ity distribution for the stochastic processes under
study.

Processing data with missing observations (data
are in the form of time series). As of today for the
data in the time series form the most suitable im-
putation techniques are as follows: simple avera-
ging when it is possible (when only a few values are
missing); generation of forecast estimates with the
model constructed using available measurements;
generation of missing estimates from distributions
the form and parameters of which are again deter-
mined using available part of data and expert esti-
mates; the use of optimization techniques, say ap-
propriate forms of EM-algorithms (expectation maxi-
mization); exponential smoothing etc. It should also
be mentioned that optimal Kalman filter can also
be used for imputation of missing data because it
contains “internal” forecasting function that pro-
vides a possibility for generating quality short-term
forecasts [12]. Besides, it has a feature of fusion the
data coming from alternative sources and impro-
ving this way the quality of state vector and its
forecasts.

Further reduction of this uncertainty is possible
thanks to application of several forecasting tech-
niques to the same problem with subsequent com-
bining of separate forecasts using appropriate weigh-
ting coefficients. The best results of combining the
forecasts is achieved when variances of forecasting
errors for different forecasting techniques do not dif-
fer substantially (at any rate the orders of the vari-
ances should be the same).

Coping with uncertainties of model parameters
estimates. Usually uncertainties of model parameter
estimates such as bias and inconsistency result from
low informative data, or data do not correspond to
normal distribution, what is required in a case of LS
application for parameter estimation. This situation

may also take place in a case of multicollinearity of
independent variables and substantial influence of
process nonlinearity that for some reason has not
been taken into account when model was con-
structed. When power of the data sample is not
satisfactory for model construction it could be ex-
panded by applying special techniques, or simula-
tion is hired, or special model building techniques,
such as group method for data handling (GMDH),
are applied. Very often GMDH produces results of
acceptable quality with rather short samples. If data
do not correspond to normal distribution, then ML
technique could be used or appropriate Monte Carlo
procedures for Markov Chains (MCMC) [13]. The
last techniques could be applied with quite accep-
table computational expenses when the number of
parameters is not large.

Dealing with model structure uncertainties.
When considering mathematical models it is con-
venient to use proposed here a unified notion of
a model structure which we define as follows:
S ={r, p,m n,d, w, [}, where r is model dimen-
sionality (number of equations); p is model order
(maximum order of differential or difference equa-
tion in a model); m is a number of independent
variables in the right hand side of a model; # is a
nonlinearity and its type; d is a lag or output reac-
tion delay time; w is stochastic external disturbance
and its type; / are possible restrictions for the vari-
ables and/or parameters. When using DSS, the mo-
del structure should practically always be estimated
using data. It means that elements of the model
structure accept almost always only approximate va-
lues. When a model is constructed for forecasting
we build several candidates and select the best one
of them with the set of model quality statistics.
Generally we could define the following techniques
to fight structural uncertainties: gradual improvement
of model order (AR(p) or ARMA (p, q)) applying
adaptive approach to modeling and automatic search
for the “best” structure using complex statistical
quality criteria; adaptive estimation (improvement)
of input delay time (lag) and data distribution type
with its parameters; describing detected process
nonlinearities with alternative analytical forms with
subsequent estimation of model adequacy and fore-
cast quality. As another example of complex statisti-
cal model adequacy and forecast quality criterion
could be the following:

J =|1-R* +aln

N
e (k)}
k=1

+[2-DW |+ BIn(1 + MAPE)+ U — min,
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where R? is a determination coefficient; DW is Dur-
bin-Watson statistic, MAPE is mean absolute per-

N N
centage error for forecasts; Zez(k) = > [y(k)
k=1 k=1

—y(k)]? is a sum of squared model errors; U is

Theil coefficient that measures forecasting charac-
teristic of a model; o, are appropriately selected

weighting coefficients; 6, is parameter vector for

1
the i —th candidate model. A criterion of this type
is used for automatic selection of the best candi-
date model. The criterion also allows operation of
DSS in the automatic adaptive mode. Obviously,
other forms of the complex criteria are possible.
While constructing the criterion it is important not
to overweigh separate members in the right hand
side.

Coping with uncertainties of a level (amplitude)
type. The use of random (i.e. with random ampli-
tude or a level) and/or non-measurable variables
leads to necessity of hiring fuzzy sets for describing
such situations. The variable with random amplitude
can be described with some probability distribution
if the measurements are available or they come for
analysis in acceptable time span. However, some
variables cannot be measured (registered) in princip-
le, say amount of shadow capital that “disappears”
every month in offshore, or amount of shadow sala-
ries paid at some company, or a technology parame-
ter that cannot be measures on-line due to absence
of appropriate gauge. In such situations we could as-
sign to the variable a set of possible values in the
linguistic form as follows: capital amount = {very low,
low, medium, high, very high}. There exists a com-
plete necessary set of mathematical operations to be
applied to such fuzzy variables. Finally, fuzzy value
could be transformed into usual “exact” form using
known techniques.

Processing probabilistic uncertainties. To fight
probabilistic uncertainties it is possible to hire Baye-
sian approach that helps to construct models in the
form of conditional distributions for the sets of
random variables. Usually such models represent the
process (under study) variables themselves, stocha-
stic disturbances and measurement errors or noise.
The problem of distribution type identification also
arises in regression modeling. Each probability dis-
tribution is characterized by a set of specific values
that random variable could take and the probabili-
ties for these values. The problem is in the distribu-
tion type identification and estimating its parame-

ters. The probabilistic uncertainty (will some event
happen or not) could be solved with various mo-
dels of Bayesian type. This approach is known as Ba-
yesian programming or paradigm. The generalized
structure of the Bayesian program includes the fol-
lowing steps: (1) problem description and statement
with putting the question regarding estimation of
conditional probability in the form: p(X;|D, Kn),
where X, is the main (goal) variable or event; the

probability p should be found as a result of appli-
cation of some probabilistic inference procedure;
(2) statistical (experimental) data D and knowledge
Kn are to be used for estimating model and pa-
rameters of specific type; (3) selected and applied
probabilistic inference technique should give an an-
swer to the question put above; (4) analysis of qua-
lity of the final result. The steps given above are to
some extent “standard” regarding model construct-
ing and computing probabilistic inference using sta-
tistical data available. This sequence of actions is na-
turally consistent with the methods of cyclic struc-
tural and parametric model adaptation to the new
data and operating modes (and possibly expert es-
timates).

One of the most popular Bayesian approaches
today is created by the models in the form of static
and dynamic Bayesian networks (BN). Bayesian net-
works are probabilistic and statistical models repre-
sented in the form of directed acyclic graphs (DAG)
with vertices as variables of an object (system) un-
der study, and the arcs showing existing causal re-
lations between the variables. Each variable of BN
is characterized with complete finite set of mutu-
ally excluding states. Formally BN could be repre-
sented with the four following components:
N=(V, G, P, T), where V stands for the set of

model variables; G represents directed acyclic graph;
P is joint distribution of probabilities for the graph
variables (vertices), V={X,,...,X,}; and T denotes
conditional and unconditional probability tables for
the graphical model variables [14, 15]. The rela-
tions between the variables are established via ex-
pert estimates or applying special statistical and
probabilistic tests to statistical data (when available)
characterizing dynamics of the variables.

The process of constructing BN is generally
the same as for models of other types, say regres-
sion models. The set of the model variables should
satisfy the Markov condition that each variable of
the network does not depend on all other variables
but for the variable’s parents. In the process of BN
constructing first the problem is solved of compu-
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ting mutual information values between all vari-
ables of the net. Then an optimal BN structure is
searched using acceptable quality criterion, say
well-known minimum description length (MDL)
that allows analyzing and improving the graph (mo-
del) structure at each iteration of the learning algo-
rithm applied. Bayesian networks provide the follow-
ing advantages for modeling: the model may include
qualitative and quantitative variables simultaneously
as well as discrete and continuous ones; number
of the variables could be very large (thousands); the
values for conditional probability tables could be com-
puted with the use of statistical data and expert es-
timates; the methodology of BN constructing is di-
rected towards identification of actual causal rela-
tions between the variables hired what results in high
adequacy of the model; the model is also operable in
conditions of missing data.

To reduce an influence of probabilistic and
statistical uncertainties on models quality and the
forecasts based upon them it is also possible to use
the models in the form of Bayesian regression
based on analysis of actual distributions, of model
variables and parameters. Consider a simple two
variables regression

y (k)| x(k)=PB, +Byx (k) + u(k), k=0,1,...,n.

It is supposed that of random values u;,...,u, are

independent and belong, for example, to normal dis-
tribution, {u(k)} ~ N (0, cﬁ ); here vector of unknown

parameters includes three elements, 6 = (B, B,, csu)T.
The likelihood function for dependent variable
y:(yl,...,yn)T and predictor x :(xl,...,xn)T with-
out proportion coefficient is determined as follows:

L(y|x, Bla B2’Gu

1 1 X 2
= —expy ——5 > [y (k) — B, —Bx (k)]” .
20, k-1

S

Using simplified (non-informative) distribu-
tions for the model parameters

&P 1,B2.0,) = &(B1) &) &3(0,),
81 (B) o const,
&(Byy) o const,
g(o,) < 1/o,,

and Bayes theorem it is possible to find joint poste-
rior distribution for the parameters in the form [16]:

1 1 1 X
h 5P, 0y, [ X, — —CXp| ———= k
(Bl BZ o) | y)occ GN p 202;1())( )

—Bl—Bzx(k))z], -0 < B, By <+, 0<o, <.

Maximum likelihood estimates for the model
parameters are determined as follows:

Bi=V -B X
Y Ik -FIy (-7
TS -7 2 1y (k)-7]

_ 1IN _ 1IN .
where Xx=N"'>" x(k), y=N"'> " y(k), with
unbiased sample estimate of variance:

61=s2 =S () - B By x (O

Joint posterior density for the model parame-
ters corresponds to two dimensional Student distri-
bution:

hy By, Baly,X) o {(N -2)s> + N(B, -B,)?
+(By-B)? Y, x (k)
+ 28 ~B) By B Yy X (k)N

This way we get a possibility for using more
exact distributions of model variables and parameters
what helps to enhance model quality. Using new ob-
servation x" and prior information regarding particu-
lar model it is possible to determine the forecast in-
terval for the dependent variable, y*, as follows:

p[x7)
=[] LG/ B1,B20) (B 1,B2,0) %, ¥)dBy, dBy, do.

Another useful Bayesian approach is in hier-
archical modeling that is based on a set of simple
conditional distributions comprising one model. The
approach is naturally combined with the theory of
computing Bayesian probabilistic inference using mo-
dern computational procedures [17]. The hierarchi-
cal models belong to the class of marginal models
where the final result is provided in the form of a
distribution P(y), where y is available data vector.
The models are formed from the sequence of con-
ditional distributions for selected variables includ-
ing the hidden ones. The hierarchical representation
of parameters usually supposes that data, y, is situ-
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ated at the lower (first) level, model parameters (se-
cond level) 6=, i=1,2..,n), 0,~N(u 1),
determine distributions of dependent variables
y;~N(®,, o?), i=1,2,...,n, and parameters {0,}

are determined by the pair, (u, © 2), of the third level.

Supposing the parameters o> and t> accept known
finite values, and parameter p is unknown with the

prior m,, then joint prior density for (9, p) could be
presented in the form: nu(p)Hine(eA w), and the

prior for parameter vector 6 will be defined by the
integral: p(0) = Inu(u)Hﬁe(OJ w)dpu.

Generation and implementation of alternatives
with the DSS

Decision making process includes rather sophi-
sticated procedures that could be partially or com-
pletely iterative, i.e. executed repeatedly when the al-
ternative found is not satisfactory for a decision ma-
king person. DSS could return automatically (or on
DMP initiative) to the previous stages of available
data and knowledge analysis.

The whole process of making and implement-
ing decisions could be considered as consisting of
the stages given below.

1 — A thorough analysis of the decision prob-
lem using all available sources of information, col-
lection of data and knowledge relevant to the prob-
lem. At this stage it is also important to consider
and use former solutions to the problem if such are
available. The information regarding former solutions
of similar problem could be helpful for correct prob-
lem statement, to select appropriate techniques for
data analysis, to speed up alternatives generation, and
to decline the alternatives that turned out to be in-
effective in the past.

2 — Selection of a class (classes) of mathemati-
cal models for the problem description, and analysis
of the possibility for the use of available (previously
developed) models. The models could belong to dif-
ferent classes as far as they can be formulated in
continuous or discrete time, be linear or nonlinear,
they could be developed according to the structural
or functional approach etc. In some cases it is nec-
essary to construct complex simulative model that
would include a set of simpler models of different
classes.

3 — Development of new models for the prob-
lem (process, object, system) under study what in-
cludes structure and parameter estimation for can-

didate models using available data (and possibly
expert estimates) and knowledge of various types.
The alternative structures of candidate models pro-
vide a possibility for selecting the best one of them
for generating alternative decisions (loss estimates,
forecasts, probability of risk estimates, control ac-
tions etc) on their bases.

4 — Analysis of the candidate models construc-
ted and selecting the best one of them with applica-
tion of a set of statistical quality criteria and expert
estimates. At this stage again more than one model
could be selected for the further use as far as the
best model (for a particular application) can be
found only after application of the candidates for
solving particular problem, i.e. after alternatives gene-
rating and estimating possible consequences of their
implementation.

5 — Application of the model (models) se-
lected for solving the problem of risk estimation
and/or control (or management) problem (when ne-
cessary). If the forecasts or controls computed are not
satisfactory we should return back to the stage one
or stage three, and repeat the process of model con-
structing. At this stage another set of statistical qua-
lity criteria should be applied to the analysis of risk
estimates, forecasts or controls.

6 — Generating a set of alternatives with the
use of the model (models) constructed and various
admissible initial conditions and constraints on vari-
ables. In a case of controls generating the alterna-
tives could be built with different optimality criteria,
utility functions or other criteria.

7 — Analysis of the alternatives generated with
the experts of an enterprise or a company, and final
selection of the best one for practical implementa-
tion. In a case when no alternative is acceptable
we should return back to the model constructing or
alternative generating stages. New knowledge or data
could be required for the next iteration of compu-
ting new decision alternatives.

8 — Planning of actions and estimation of fi-
nancial, material and human resources that are nec-
essary for implementation of the alternative selected.
Determining of the time horizon (horizon of con-
trol) necessary for implementing the decision made.

9 — Implementation of the decision made:
current monitoring of availability and spending the
necessary resources, estimation of necessary time
frames, registering and quality estimation of inter-
mediate and final results.

10 — Application of possible analytic and ex-
pert quality criteria to estimation of final results.

11 — Analysis of the final results by the com-
pany experts, and final elucidation of advantages
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and disadvantages of the alternative implemented;
analysis of the decision making and implementing
process, and forming forecasts (foresights) for the
future.

12 — Writing the final report on the tasks per-
formed.

Data, model and forecasts quality criteria

To achieve reliable high quality final result of
risk estimation and forecasting at each stage of
computational hierarchy separate sets of statistical
quality criteria have been used. Data quality con-
trol is performed with the following criteria:

— database analysis for missing values using de-
veloped logical rules, and imputation of missed va-
lues with appropriately selected techniques;

— analysis of data for availability of outliers
with special statistical tests, and processing of out-
liers to reduce their negative influence on statistical
properties of the data available;

— normalizing of data in the selected range in
a case of necessity;

— application of low-order digital filters (usu-
ally low-pass filters) for separation of observations
from measurement noise;

— application of optimal (usually Kalman) fil-
ters for optimal state estimation and fighting sto-
chastic uncertainties;

— application of principal component method
to achieve desirable level of orthogonalization be-
tween the variables selected;

— computing extra indicators for the use in
regression and other models (say, moving average
processes based upon measurements of dependent
variables).

It is also useful to test how informative is the
data collected. Very formal indicator for the data
being informative is its sample variance. It is con-
sidered formally that the higher is the variance the
richer is the data with information. Another crite-
rion is based on computing derivatives with a poly-
nomial that describes data in the form of a time
series. For example, the equation given below can
describe rather complex process with nonlinear trend
and short-term variations imposed on the trend
curve:

y(k)=a, +iaiy(k—i)
i=1

+eik+ek? +. ¢, k™ +e(k),

where y (k) is basic dependent variable; a;, c; are

model parameters; k=0,1,2,... is discrete time; e(k)

is a random process that integrates the influence of
external disturbances to the process being modeled
as well as model structure and parameters errors.
Autoregressive part of the model describes the de-
viations that are imposed on a trend, and the trend
itself is described with the m-th order polynomial
of discrete time k. In this case maximum number
of derivatives could be m, though in practice actual
number of derivatives is defined by the largest num-
ber i of parameter c;, that is statistically significant.

To select the best model constructed the follow-
ing statistical criteria are used: determination coef-
ficient (R?); Durbin-Watson statistic (DW); Fisher
F-statistic; Akaike information criterion (A/C), and
residual sum of squares (SSE). The forecasts qua-
lity is estimated with hiring the criteria mentioned
in [1, 2]. To perform automatic model selection the
above mentioned combined criteria (1) could be
hired. The power of the criterion was tested experi-
mentally and proved with a wide set of models and
statistical data. Thus, the three sets of quality criteria
are used to insure high quality of final result.

Example of the DSS application

One of the forecasting problems solved with
the DSS proposed was estimation of stock prices
forecasts with relation to the given level set by the
constant ¢. The problems of this type are often solved
when the stock trading operations are performed.
The models constructed for the purpose and the
forecasting results are given in Table. Three lower
rows of the table characterize the results of appli-
cation of dynamic Bayesian networks.

The forecasting results achieved with the dy-
namic Bayesian network were compared to the lo-
gistic regression combined with the multiple linear
regression:

ex](k)
Emin OCl):W’
x; (k) = —0.626 — 0.424 - S2(k) - 0.616 - P(k)
—0,81- R2(k)+ 0.773- R3(k) + 1.739 - yf(k),

where 52(/(), P(k), R2(k), R3(k) are technical ana-
lysis indicators; yf(k) is the variable characterizing

output of multiple regression, that accepts the value
I in a case of growing price, and 0 in a case of fal-
ling price. Thus, the best price forecasting model in
this case turned out to be logistic regression with
Backward Selection of independent variables but for
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the indicator yf(k), which is a forecast computed

with multiple regression (p = 0.869). The best results
of forecasting with DBN were achieved with the
“memory depth” value of 5 and the use of linear
Kalman filter (p = 0.871). It should be noted that
computational expenses in latter case were much
higher than in the case of logistic regression applica-
tion. It was also established that the forecasts quality
is dependent on the value of the threshold c, se-
lected as a basis for forecasting.

Table. Results of modeling and forecasting

Probability

of forecast

Threshold The best Threshold | ¢ oincidence

value ¢ model value .f(.)r with the
probability true direc-
tion (p)

0.0075 LR (BS) + MR 0.47 0.869
0.0065 LR (FS) + MR 0.5 0.861
0.0060 LR (BS) + MR 0.5 0.846
0.0055 DT (CHAID) 0.45 0.832
0.0050 LR (FS) + MR 0.52 0.831
0.0045 LR (BS) + MR 0.52 0.828
0.0040 LR (BS) + MR 0.43 0.826
0.0035 LR (BS) + MR 0.49 0.822
0.0010 LR (FS) + MR 0.34 0.732
0.0005 LR (FS) + MR 0.4 0.710
—-0.0020 | LR (BS) + MR 0.43 0.677
-0.0025 | LR (BS) + MR 0.47 0.699
0.0075 DBN-3 0.52 0.729
0.0075 DBN-3 + KF 0.52 0.837
0.0075 DBN-5 + KF 0.52 0.871

Abbreviations in the table: LR — logistic regression; MR —
multiple regression; DT — decision tree; DBN — dynamic Baye-
sian network; KF — Kalman filter; FS — forward selection; BS —
backward selection; CHAID — CHi-squared Automatic Interac-
tion Detector.

Conclusions

The general methodology was proposed for
constructing DSS for mathematical modeling and
forecasting of economic and financial processes that
is based on the system analysis principles. As in-
strumentation for fighting possible structural, statis-
tic and parametric uncertainties the following tech-
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niques are used: Kalman filter, various missing data
imputation techniques, multiple methods for model
parameter estimation, and Bayesian programming
approach.

The system proposed has a modular architec-
ture that provides a possibility for easy extension of
its functional possibilities with new parameter esti-
mation techniques, forecasting methods, financial risk
estimation procedures, and alternatives generation.
High quality of the final result is achieved thanks
to appropriate tracking of the whole computational
processes at all stages of data processing: prelimi-
nary data processing, model structure and parame-
ter estimation, computing of short- and middle-term
forecasts as well as thanks to convenient for a user
intermediate and final results representation. The sys-
tem is based on the ideologically different tech-
niques of modeling and forecasting what creates a
convenient basis for combination of various appro-
aches to achieve the best results. The examples of the
system application show that it could be used suc-
cessfully for solving practical problems of nonlinear
nonstationary processes forecasting. The results of
computing experiments lead to the conclusion that
today nonlinear regression, Bayesian networks and the
models resulted from application of regression analy-
sis are quite acceptable instruments for short-term
forecasting. It also should be stressed that the DSS
constructed turned out to be very useful instrument
for a decision maker that helps to perform quality
processing of statistical data using different techni-
ques, generate alternatives and to select the best one
with a set of appropriate quality criteria. The system
performs tracking of the whole computational
process using separate sets of statistical quality crite-
ria at each stage of decision making: quality of data,
models and forecasts or risk estimates.

The DSS proposed could be used for support
of decision making in various areas of scientific and
practical activities including strategy development for
industrial and financial enterprises, investment com-
panies etc. Further extension of the system functions
is planned with new forecasting techniques based on
probabilistic approach, fuzzy sets, neuro-fuzzy mo-
dels.

Tsay R.S. Analysis of Financial Time Series. — Chicago: Wiley & Sons, Ltd., 2010. — 715 p.

Harris L., Hong X., Gan Q. Adaptive Modeling, Estimation and Fusion from Data. — Berlin: Springer, 2002. — 323 p.
Congdon P. Applied Bayesian Modeling. — Chichester: John Wiley & Sons, Ltd., 2003. — 472 p.

DelLurgio S.M. Forecasting Principles and Applications. — Boston: McGraw-Hill, 1998. — 802 p.

Taylor S.J. Modeling stochastic volatility: a review and comparative study // Math. Finance. — 1994. — 4, Ne 2. — P. 183—204.



IHOOPMALLINHI TEXHOIOT 1T, CACTEMHWUA AHATII3 TA KEPYBAHHS 35

6. Burstein F., Holsapple C.W. Handbook of Decision Support Systems. — Berlin: Springer-Verlag, 2008. — 908 p.

7. Hollsapple C.W., Winston A.B. Decision Support Systems. — Saint Paul: West Publishing Company, 1996. — 860 p.

8. bioox I1.1., Toxcuti O.11. KoMIT’1oTepHi cUCTeMU MiATPUMKY TPUAHSTTS pillleHb. — MukonaiB: YopHoMop. aepk. yH-T iM. [letpa
Moruau, 2012. — 380 c.

9. Xekalaki E., Degiannakis S. ARCH Models for Financial Applications. — Chichester: Wiley & Sons, Inc., 2010. — 550 p.

10.  biowk I1.1., Mensiinenxo O.C. Metonu niporHo3yBaHHs. — JlyraHcek: Anbma Matep, 2008. — 608 c.

11.  Consistent estimates of the parameters of a linear system / W.N. Anderson, G.B. Kleindorfer, P.R. Kleindorfer, M.B. Woodroofe //
Annals Math. Stat. — 1969. — 40, Ne 6. — P. 2064—2075.

12.  Gibbs B.P. Advanced Kalman Filtering, Least-Squares and Modeling. — Hoboken (New Jersey): John Wiley & Sons, Inc.,

2011. — 627 p.
13.  Gilks W.R., Richardson S., Spiegelhalter D.J. Markov Chain Monte Carlo in Practice. — New York: Chapman & Hall/CRC,
2000. — 486 p.

14.  Jensen F.V., Nielsen Th.D. Bayesian Networks and Decision Graphs. — New York: Springer, 2007. — 457 p.

15.  Bayesian Networks in Decision Support Systems / M.Z. Zgurovsky, P.I. Bidyuk, O.M. Terentyev, T.I. Prosyankina-Zharova. —
K.: Edelweis, 2015. — 300 p.

16.  Bernardo J.M., Smith A.F.M. Bayesian Theory. — New York: John Wiley & Sons, Ltd., 2000. — 586 p.

17.  Bolstad W.M. Understanding Computational Bayesian Statistics. — Hoboken (New Jersey): John Wiley & Sons, Ltd, 2010. — 334 p.

References

R.S. Tsay, Analysis of Financial Time Series. Chicago: Wiley & Sons, Ltd., 2010.

L. Harris et al., Adaptive Modeling, Estimation and Fusion from Data. Berlin, Germany: Springer, 2002.

P. Congdon, Applied Bayesian Modeling. Chichester, UK: John Wiley & Sons, Ltd., 2003.

S.M. DeLurgio, Forecasting Principles and Applications. Boston: McGraw-Hill, 1998.

S.J. Taylor, “Modeling stochastic volatility: a review and comparative study”, Math. Finance, vol. 4, no. 2, pp. 183—204, 1994.

F. Burstein and C.W. Holsapple, Handbook of Decision Support Systems. Berlin, Germany: Springer-Verlag, 2008.

C.W. Hollsapple, Decision Support Systems. Saint Paul: West Publishing Company, 1996, 860 p.

P.I. Bidyuk and O.P. Gozhyj, Development of Decision Support Systems. Mykolaiv, Ukraine: Petro Mohyla Black Sea State

NN R LN

University, 2012 (in Ukrainian).

9. E. Xekalaki and S. Degiannakis, ARCH Models for Financial Applications. Chichester, UK: Wiley & Sons, Inc., 2010.

10.  P.I. Bidyuk and O.S. Menyailenko, Methods of Forecasting. Lugansk, Ukraine: Alma Mater, 2008 (in Ukrainian).

11.  W.N. Anderson et al., “Consistent estimates of the parameters of a linear system”, Annals Math. Stat., vol. 40, no. 6,
pp. 2064—2075, 1969.

12.  B.P. Gibbs, Advanced Kalman Filtering, Least-Squares and Modeling. Hoboken (New Jersey): John Wiley & Sons, Inc., 2011.

13.  W.R. Gilks et al., Markov Chain Monte Carlo in Practice. New York: Chapman & Hall/CRC, 2000.

14.  F.V.Jensen and Th.D. Nielsen, Bayesian Networks and Decision Graphs. New York: Springer, 2007, 457 p.

15.  M.Z. Zgurovsky et al., Bayesian Networks in Decision Support Systems. Kyiv, Ukraine: Edelweis, 2015.

16. J.M. Bernardo and A.F.M. Smith, Bayesian Theory. New York: John Wiley & Sons, Ltd, 2000.

17.  W.M. Bolstad, Understanding Computational Bayesian Statistics. Hoboken (New Jersey): John Wiley & Sons, Ltd., 2010.

M.1. Bigtok, O.M. Tpodumuyk, O.I. Foxun, O.I1. bigtok

OBPOBKA HEBU3HAYEHOCTEM MPU MOLEMOBAHHI HECTALIOHAPHUX YACOBWX PSALIB 3 BUKOPUCTAHHAM
CUCTEM NIATPUMKU PILLEHb

Mpobnemartuka. [porHo3yBaHHs HEMiHINHUX HecTauioHapHKX Yacosux pagis (HHYP) — Baxnuea 3agava onst eKOHOMIKM, Mapke-
TUHTY, MPOMUCIIOBOCTI, eKonorii Ta 6araTbox iHWMX rany3en Hayku i NpakTUYHOI AisnbHOCTI. [ins ycnilwHoro po3e’s3aHHs Uiei 3agadi He-
06XxiaHO po3pobnATY CyvacHi KOMM'IOTEPHI CUCTEMUN NIATPUMKM NPUNHATTS piweHb (CITMP), ski gagyTe MOXNMBICTb OTPUMYBATU HaAivHI
OL}iHK/ NPOTrHO3iB B yMOBaX HassBHOCTi HEBM3HAY€HOCTEW Pi3HUX TUMIB | Npupoaun.

MeTta pocnigxeHHA. Po3pobka Bumor go cydacHux CIIMP Ta ix dbopmManbHe nodaHHs; aHani3 TuniB HEBU3HaYeHOCTEN, Xapak-
TEepHUX Ans npouecis NobyaoBM MaTeMaTUYHUX MOAENen Ta NPOrHo3yBaHHs; BUGIp MeToAiB AN BpaxyBaHHA MOXIMBUX HEBU3HAYEHO-
CTewn; incTpaLis 3acToCcyBaHHSA CUCTEMU [0 PO3B’AA3aHHA 3aadi MPorHo3yBaHHA retepockegactuyHnx HHYP Ha ocHOBI cTatucTnyHMX
OaHuX.

MeToguka peanisauii. [1ns 4OCArHEHHA NOCTaBMEHOI METU BUKOPUCTAHO Taki MeToau: CUCTEMHUIA Miaxig 4o aHanidy ctaTucTud-
HUX AaHUX; CTaTUCTUYHUIA Nigxig oo ineHTudikauii Ta BpaxyBaHHS MOXIMBUX HEBU3HAYEHOCTEN; anropuTMU KariMaHOBCEKOI dpinbTpauii;
nigxig Ha ocHoBi GareciBCbKOro NporpaMyBaHHs Ta MHOXWUHWU CTaTUCTUYHUX KPUTEPIiB afeKBaTHOCTI Modenew i SKOCTi MPOrHo3is.

Pe3ynbTaTtu gocnigxeHHs. 3anponoHosBaHo dpopmanbHum onuc CIMP Ta BuMmorun Ao ix po3pobku; BCTaHOBMEHO Kracu matema-
TUYHUX METOZIB, AKki HeobxiaHi Ans ycniwHoi peanisauii CMIMP; 3anponoHoBaHOo Aesiki nigxoan Ao opManbHOro BpaxyBaHHS MMOBIPHIC-
HWUX, CTAaTUCTUYHUX | TAapaMeTpUYHUX HEBU3HAYEHOCTEN | NOAaHO iNCTpPaTUBHUIA Npuknag 3actocyBaHHs CIITP.
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BucHoBku. CuctemHnii nigxig oo cteopenHs CIIMP ona po3s’sidaaHHst 3a4ayv NPOrHO3yBaHHST HEMiHIMHUX HeCcTaLioHapHUX Yaco-
BUX pPAAiB fae MOXIMBICTb YCMILLHO PO3B’A3aTV MoCTaBneHy 3aaady. BUkopuCTOBYIOUM 3anponoHoBaHy CUCTEMY, MOXHA BpaxoByBaTu
HEBU3HAYEHOCTi MMOBIPHICHOrO, CTaTUCTUYHOTO | NapamMeTpPUYHOro TUNiB i 0BYMCRIOBaTN BUCOKOSIKICHI OLLIHKM KOPOTKO- Ta CepeaHbOoCT-
pokoBux nporHosis HHYP. 3anponoHoBaHwiA nigxia Mae XopoLui MepcnekTBmM Afs NOAanbLIOro PO3BUTKY i PO3LUMPEHHS NOTO MOXITMBOCTEN.

Knio4yoBi cnoBa: NporHo3yBaHHSA YacoBWX PsSAiB; CUCTEMHUIA NigXid; NMOBIPHICHI, CTAaTUCTUYHI | NapaMeTpuUYHi HEBU3HAYEHOCTI;
cucTtema niaTPUMKU NPUAHATTS PilleHb.

M.1 bugiok., A.H.Tpodumuyk, A.M.Ioxun, A.T. Buarok

OBPABOTKA HEOMPEAENEHHOCTEA NPU  MOAEJIMPOBAHUM HECTALUMOHAPHBLIX BPEMEHHBIX PAOOB C
MCMONb30OBAHUEM CUCTEM NOJOEPXKW PELLEHUI

Mpo6nemaTtuka. [NporHo3npoBaHue HENMHENHbIX HECTALMOHapHbIX BpeMeHHbIX psgoB (HHBP) — BaxHas 3agaya Anst aKoHOMU-
KW, MapKeTUHra, NPOMBILLNIEHHOCTM, 3KOMOMMM U MHOTUX APYrMX OTPacren Hayku U NpakTUYecKon AesTeNnbHOCTU. [ns ycnewHoro pe-
LWeHnsa 3Ton 3afjadm Heobxoommo paspabaTbiBaTb COBPEMEHHbIE KOMMbIOTEPHbIE CUCTEMbI NOAAEPXKKM MPUHATUMSA pewenun (CMMP),
KOTOpble AafdyT BO3MOXHOCTb NonyyaTb HafAeXHble OLEHKU NMPOrHO30B B YCMOBUSX HaNMW4usi HeonpeaeneHHOCTEN pasnuyHbIX TUMOB U
npupogsl.

Llenb nccnepoBanus. Paspabotka TpeboBaHuii k coBpemeHHbIM CITMP 1 ux dopmanbHoe npeactaBneHne; aHanms TUMoB He-
onpeaeneHHoOCTEN, XapakTepHbIX AN NMPOLECCOB NMOCTPOEHUST MaTeMaTUYeCcknx MOAENeN U NporHo3MpoBaHusi; Bbibop MeTodoB yyeTa
BO3MOXHbIX HEOMPEAENEHHOCTEW; UNIOCTPaLUsS MPUMEHEHUS] CUCTEMBI NS PELLEHNs 3a4a4u NPOrHO3MPOBaHUSI FETEPOCKEAACTUHECKMX
HHBP ¢ nomoLLblo CTaTUCTUYECKUX OAHHbIX.

MeToauka peanusauuu. [Ins OOCTUXEHUSI NOCTABNEHHOW LENU UCMOMb30BaHbl TakMe METOAbl: CUCTEMHBIA MOXO4 K aHanuay
CTaTUCTUYECKUX OAHHbIX; CTaTUCTUYECKUIA NOXOA K MOAEHTUUKALMU U YYETY BO3MOXHBLIX HEOMNPEAENEHHOCTEN; anropuTMbl KariMaHoB-
CKoVi hunbTpaumm; Noxon Ha OCHOBe GanecoBCKOro NPOrpaMMUPOBAHUS MU MHOXECTBA CTAaTUCTUYECKUX KPUTEPUEB afeKBAaTHOCTUM MO-
enew n kayecTsa NPOrHO30B.

Pe3ynbTaTbl uccnepgoBaHus. [peanoxersl hopmansHoe onucaHune CITP 1 TpeboBaHus K nx pa3paboTke; onpeaeneHbl knac-
Cbl MaTEMaTUYECKMX METOAOB, HEOOX0AUMBIX ANsA ycnewHon peanu3auumn CITMP; npeanoxeHbl HEKOTOpble NOAXoAbl K hopmarnbHOMY
y4YeTy BEPOSITHOCTHbIX, CTAaTUCTUYECKMX U NapaMeTpUyHecknx HeonpeaeneHHOCTen; NpMBEAEH UINMIOCTPaTMBHLIN NPUMEP UCMONb30Ba-
Hus CIIMP.

BbiBogbl. CuctemHbIvi noaxof k cosganuio CIMP ana pelenns 3agav NporHO3NPOBaHWUsST HENMUHENHbBIX HECTALMOHAPHbIX Bpe-
MEHHbIX PSA0B NO3BONSET YCMELHO peLlaTh NOCTaBEHHYH 3afavy. Vicnonb3ys NpeanoXeHHy CUCTEMY, MOXHO yYUTbIBaTb Heonpe-
OEenNeHHOCTN BEPOSITHOCTHOIO, CTaTUCTUYECKOTO M NMapaMeTpPUYEeCcKoro TUMNOB U BbIMUCHSATb BbICOKOKAYECTBEHHbBIE OLIEHKU KPaTKOCPOY-
HbIX U cpeaHecpoYHbix NporHo3oB HHBP. MNpeanoxeHHbI Noaxon MMeeT XOopoLuMe NepcrneKkTUBbl ANns AanbHenWwero passuTna u pac-
LUIMPEHUSI ero BO3MOXHOCTEWN.

KnioueBble cnoBa: NporHo3npoBaHWe BPEMEHHBIX PSAOB; CUCTEMHbIN NMOAX0A; BEPOSATHOCTHbIE, CTaTUCTUYECKNE U NapaMeTpu-
Yyeckne HeonpeaeneHHOCTH; cUcTeMa NoAAePXKKM NPUHATUS PELLEHWIA.

PexomennoBana Panoro Hapiituia no pemakuii
HaBuanbHO-HaAyKOBOTO KOMILIEKCY 24 tpaBHsa 2016 poky
“IHCTUTYT IPUKJIATHOIO CUCTEMHOTO

ananizy” HTYY “KIII im. 1. Cikopcekoro”



