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PROCESSING UNCERTAINTIES IN MODELING NONSTATIONARY TIME SERIES  
             USING DECISION SUPPORT SYSTEMS 

Background. Forecasting of nonlinear nonstationary time series (NNTS) is important problem in economics, market-
ing, industry, ecology and many other branches of science and practical activities. Successful solution of the problem 
requires development of modern computer based decision support systems (DSS) capable to generate reliable esti-
mates of forecasts in conditions of uncertainty of various type and origin.  
Objective. The purpose of the research is as follows: development of requirements to the modern DSS and their for-
mal representation; analysis of uncertainty types characteristic for model building and forecasting; selection of tech-
niques for taking into consideration of the uncertainties; and illustration of the system application to solving the 
problem of forecasts estimation for heteroskedastic NNTS using statistical data.  
Methods. To reach the objectives stated the following methods were used: systemic approach to statistical data analy-
sis; statistical approach to identification and taking into consideration of possible uncertainties; Kalman filtering 
techniques; Bayesian programming approach and statistical criteria of model adequacy and quality of forecasts.  
Results. Formal description of the DSS is provided, and requirements to its development are given; the classes of 
mathematical methods necessary for DSS implementation are proposed; some approaches to formal taking into con-
sideration of probabilistic, statistical and parametric uncertainties are discussed; and illustrating example of the DSS 
application is considered.  
Conclusions. Systemic approach to DSS constructing for solving the problem of nonlinear nonstationary time series 
forecasting turned out to be very fruitful. Using the system proposed it is possible to take into consideration various 
uncertainties of probabilistic, statistical and parametric type, and to compute high quality estimates of short and me-
dium term forecasts for NNTS. The approach proposed has good perspectives for the future improvements and en-
hancement.  

Keywords: time series forecasting; systemic approach; probabilistic, statistical and parametric uncertainties, decision 
support system. 

Introduction 

Analysis of nonlinear nonstationary time se-
ries (NNTS) is an urgent problem not only for fi-
nancial organizations and companies but for all in-
dustrial enterprises, small and medium business, 
investment and insurance companies etc. Adequate 
models of NNTS and the forecasts generated with 
them help to take into consideration a set of vari-
ous influencing factors and make objective mana-
gerial decisions. Another purpose of the studies is in 
estimating possible risks using forecasts of NNTS 
volatility. There are several types of NNTS that 
could be described with mathematical models in the 
form of appropriately constructed equations or pro-
bability distributions. Among them are processes with 
deterministic and stochastic trends, and heteroske-
dastic processes. As of today the following mathe-
matical models are widely used for describing dy-
namics of NNTS: linear and nonlinear regression 
(logit and probit, polynomials, splines), autoregres-
sive integrated moving average (ARIMA) models, 
autoregressive conditionally heteroskedastic models  

 
(ARCH), generalized ARCH (GARCH), dynamic 
Bayesian networks, support vector machine (SVM) 
approach, neural networks and neuro-fuzzy tech-
niques as well as combinations of the approaches 
mentioned [1—5].  

All types of mathematical modeling usually 
need to cope with various kinds of uncertainties re-
lated to statistical data, structure of the process 
under study and its model, parameter uncertainty, 
and uncertainties relevant to the models and fore-
casts quality. Reasoning and decision making are 
very often performed with leaving many facts un-
known or rather vaguely represented in processing 
of data and expert estimates. To avoid or to take 
into consideration the uncertainties and improve 
this way quality of the final result (processes fore-
casts and decisions based on them) it is necessary 
to construct appropriate computer based decision 
support systems (DSS) for solving multiple specific 
problems.  

Selection and application of a specific model 

for process description and forecasts estimation de-

pends on application area, availability of statistical 
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data, qualification of personnel, who work on the 

data analysis problems, and availability of appro-

priate applied software. Better results for estimation 

of processes forecasts is usually achieved with ap-

plication of ideologically different techniques com-

bined in the frames of one computer system. Such 

approach to solving the problems of quality fore-

casts estimation can be implemented in the frames 

of modern decision support systems (DSS). DSS 

today is a powerful instrument for supporting user’s 

(managerial) decision making as far as it combines 

a set of appropriately selected data and expert es-

timates processing procedures aiming to reach final 

result of high quality: objective high quality alter-

natives for a decision making person (DMP). De-

velopment of a DSS is based on modern theory 

and techniques of system analysis, data processing 

systems, estimation and optimization theories, ma-

thematical and statistical modeling and forecasting, 

decision making theory as well as many other re-

sults of theory and practice of processing data and 

expert estimates [6—8]. 

The paper considers the problem of DSS con-

structing for solving the problems of modeling and 

estimating forecasts for selected types of NNTS 

with the possibility for application of alternative 

data processing techniques, modeling and estima-

tion of parameters and states for the processes un-

der study. One of such widely used parameters in 

economic and financial sphere is volatility.  

Problem formulation  

The purpose of the study is as follows: 1) de-

velopment of requirements to the modern decision 

support systems and their formal representation;  

2) analysis of uncertainty types characteristic for 

model building and forecasting; 3) selection of tech-

niques for taking into consideration of the uncer-

tainties; 4) selection of mathematical modeling and 
forecasting techniques for NNTS — heteroskedastic 

processes; 5) illustration of the system application to 

solving selected problem of forecasts estimation for 

heteroskedastic NNTS using appropriate statistical 

data.  

Requirements to modern DSS 

Modern DSS are rather complex multifunc-

tional (possibly spatially distributed) highly deve-

loped information processing computing systems with 

hierarchical architecture that corresponds to the na-

ture of decision making by a decision making per-

son. To make their performance maximum useful 

and convenient for users of different levels (like 

engineering and managerial staff) they should sa-

tisfy some known general requirements. Formally 

DSS could be defined as follows:  

{ , , , ,

, , , , , },

DSS DKB PDP ST MSE

MPE FGP DQ MQ FEQ AQ


 

where DKB  is data and knowledge base; PDP  is a 

set of procedures for preliminary data processing; 

ST  is a set of statistical tests for determining pos-

sible effects contained in data (like integration or 

heteroskedasticity); MSE  is a set of procedures for 

estimating of mathematical model structure; MPE  

is a set of procedures for estimation of mathemati-

cal model parameters; FGP  are forecasts genera-

ting procedures; , , ,DQ MQ FEQ AQ  are the sets 

of statistical quality criteria for estimating quality 

of data, models, forecast estimates, and decision 

alternatives. 

Such systems should satisfy the following gen-

eral requirements that follow from the system 

analysis principles: 1) contain highly developed bases 

of data and knowledge: mathematical models con-

structing procedures; quality criteria for each type 

of computing, and model selection rules; 2) to achie-

ve high quality of the final result the hierarchy of 

the system functioning should correspond to the 

hierarchic process of making decision by a human; 

3) their interface should be based on the human 

factors principles: user friendly, convenient and sim-

ple for use, as well as adaptive to users of vari-  

ous levels (e.g.,engineering and managerial staff);     

4) the system should possess an ability for learning 

in the process of its functioning, i.e. accumulate ap-

propriate knowledge regarding possibilities of sol-

ving the problems of definite class; 5) an active use 

of artificial intelligence data processing techniques, 

helping to gradually transform the DSS into intelli-

gent one; 6) the organization aspects and techni-

ques for computing procedures should provide for 

an appropriate rate of computing that corresponds 

to the DMP requirements with regard to the rate of 

generating alternatives and reaching the final result; 

7) precision (quality) of computing should satisfy 

preliminary established requirements by a user and 

developer; 8) intermediate and final results of com-

putations should be controlled with appropriate sets 

of analytic quality criteria, what would allow to 

enhance significantly quality and reliability of the 

final result (decision alternatives); 9) DSS should 

generate all necessary for a user formats and types 

of intermediate and final results representations with 

taking into consideration the users of various le-
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vels; 10) the system should contain the means for 

exchanging with data and knowledge with other in-

formation processing systems via local and/or global 

computer nets; 11) to make the system functionality 

complete and flexible DSS should be easily ex-

pandable with new functions regarding data proc-

essing, results representation and control with appro-

priate statistical criteria, model constructing and al-

ternatives generating.  

Satisfaction of all the requirements mentioned 

above provides a possibility for effective practical 

application of the system developed and enhancing 

general behavioral effect of the DSS as a whole for 

a specific company or an enterprise within long 

periods of time.  

Basic mathematical tools for DSS 

 All mathematical tools and techniques hired 

for development and implementation of DSS could 
be divided in the two following groups: 1 — general 

purpose tools that provide for implementation of the 
system functions; and 2 — special purpose methods 

and techniques that are necessary for solving spe-

cific problems regarding preliminary and basic data 

processing, model constructing, alternatives gener-

ating, selecting the best alternative for further im-

plementation and forecasting of the implementation 

consequences.  

The group of the general purpose methods in-

cludes the following ones: 

— data and knowledge collecting and editing 

procedures; 

— preliminary data processing techniques such 

as digital filtering, normalization, imputation of mis-

sing values, detecting special effects such as regime 

switching, seasonal effects, spikes, nonstationarity etc; 

— the methods for accumulating information 

regarding previous applications of DSS to problem 

solving for the retrospective analysis and repetitive 

use; 

— computer graphics techniques;  

— techniques for syntactic analysis to be used 

in a command interpreter (language system of 

DSS); 

— methods for setting up necessary communi-

cations with other information processing systems 

via local and global nets; 

— logical rules to control the system functioning. 

The set of the methods mentioned are to be 

modified or expanded depending on a specific ap-

plication.  

Selection of the application defined mathe-

matical methods for a DSS functioning depends on 

a specific system application area, possible specific 

problem statements regarding data processing, model 

building, processes forecasting, and alternatives ge-

nerating. However, it is possible to state that in most 

cases of DSS development it is necessary to use the 

following mathematical methods: 

— methods and methodologies for mathemati-

cal (statistical and probabilistic) modeling using sta-

tistical/experimental data and expert estimates; 

— forecasts estimating techniques (including 

risks estimation) on the basis of the models construc-

ted with possibilities for combining the forecasts 

computed with different techniques; 

— operations research optimization techniques 

and dynamic optimization (optimal control) methods; 

— the methods for forecasting/foresight of de-

cision implementation consequences; 

— the sets of specific analytic (statistical) cri-

teria to control the processes of computations per-

formed at each stage of data processing, model con-

structing and alternatives generation aiming to reach 

high quality of intermediate and final results.  

All the methods and methodologies mentio-

ned are described with necessary completeness in 

special modern literature. For example, time series 

modeling and forecasting are presented in many re-

ferences, more particularly in [9, 10], and financial 

risks modeling, evaluation and management is con-

sidered in a vast literature, say in [11, 12]. The task 

for a DSS developer is in appropriate selection of 

model classes, modeling and optimization techni-

ques, quality criteria as well as relevant methodo-

logies for appropriate organization of all computa-

tional procedures.  

Coping with uncertainties 

As it was mentioned above all types of ma-

thematical modeling usually need to consider vari-

ous kinds of uncertainties caused by data, informa-

tional structure of a process under study and its 

model, parameter uncertainty, and uncertainties rele-

vant to the quality of models and forecasts. In many 

cases a researcher has to cope with the following 

basic types of uncertainties: structural, statistical and 

parametric. Structural uncertainties are encountered 

in the cases when structure of the process under 

study (and respectively its model) is unknown or not 

clearly enough defined (known partially). For exam-

ple, when the functional approach to model con-

structing is applied usually we do not know object 

(or a process) structure, it is estimated with appro-

priate model structure estimation techniques: cor-
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relation analysis, estimation of mutual information, 

lags estimation, testing for nonlinearities and non-

stationarity, identification of external disturbances 

type etc. The sequence of actions necessary for iden-

tification, processing and taking into consideration 

of uncertainties could be formulated as follows: 

— identification and reduction of data uncer-

tainty; 

— model structure and parameters estimation; 

— reduction of uncertainties related to the mo-

del structure and parameters estimation; 

— estimation of forecasts and reduction of re-

spective uncertainties; 

— selection of the best final result. 

All the tasks mentioned above are solved se-
quentially (or in an adaptive loop) with appropriate-
ly designed and implemented DSS.  

We consider uncertainties as the factors that 
influence negatively the whole process of mathe-
matical model constructing, forecasts and possible 
risk estimating and generating of alternative deci-
sions. They are inherent to the process being stu-
died due to incomplete or noise corrupted data, com-
plex stochastic external influences, incompleteness or 
inexactness of our knowledge regarding the objects 
(systems) structure, incorrect application of computa-
tional procedures etc. The uncertainties very often 
appear due to incompleteness of data, noisy meas-
urements or they are invoked by sophisticated sto-
chastic external disturbances with complex unknown 
probability distributions, poor estimates of model 
structure or by a wrong selection of parameter es-
timation procedure. The problem of uncertainties 
identification is solved with application of special 
statistical tests and visual studying of available data.  

As far as we usually work with stochastic data, 
correct application of existing statistical techniques 
provides a possibility for approximate estimation of 
a system (and its model) structure. To find “the best” 
model structure it is recommended to apply adap-
tive estimation schemes that provide automatic 
search in a wide range of model structures and pa-
rameters (model order, time lags, and possible non-
linearities). It is often possible to perform the search 
in the class of regression type models with the use of 
information criterion of the following type [2]:  

log( ) log( ( )) log ,N

N p
N FPE N V N

N p

 
     


   (1) 

where 

 is a vector of model parameters estimates; 

N is a power of time series used; FPE is final pre-

diction error term; ( )NV 


 is determined by the sum 

of squared errors; p  is a number of model parame-

ters. The value of the criteria (1) is asymptotically 

equivalent to the Akaike information criterion as 

.N    As the amount of data, N, may be limi-

ted, then an alternative, the minimum description 

length (MDL) criterion  

 
log( )

log( ( ))N

N
MDL V p

N
  


 

could be used to find the model that adequately 

represents available data with the minimum amount 

of information.  

There are several possibilities for adaptive mo-

del structure estimation: (1) application of statistical 

criteria for detecting possible nonlinearities and the 

type of nonstationarity (integrated or heteroskedastic 

process); (2) analysis of partial autocorrelation for 

determining autoregression order; (3) automatic esti-

mation of the exogeneous variable lag (detection of 

leading indicators); (4) automatic analysis of residual 

properties; (5) analysis of data distribution type and 

its use for selecting correct model estimation me-

thod; (6) adaptive model parameter estimation with 

hiring extra data; (7) optimal selection of weighting 

coefficients for exponential smoothing, nearest neigh-

bor and other techniques. The use of a specific adap-

tation scheme depends on volume and quality of da-

ta, specific problem statement, requirements to fore-

cast estimates etc.  

The adaptive estimation schemes also help to 

cope with the model parameters uncertainties. New 

data are used to re-compute model parameter es-

timates that correspond to possible changes in the 

object under study. In the cases when model is non-

linear alternative parameter estimation techniques 

(say, MCMC) could be hired to compute alterna-

tive (though admissible) sets of parameters and to se-

lect the most suitable of them using statistical qua-

lity criteria.  

Processing some types of stochastic uncertainties. 

While performing practical modeling very often sta-

tistical characteristics (covariance matrix) of stochas-

tic external disturbances and measurement noise (er-

rors) are unknown. To eliminate this uncertainty op-

timal filtering algorithms are usually applied that pro-

vide for a possibility of simultaneous estimation of 

object (system) states and the covariance matrices. 

One of the possibilities to solve the problem is op-

timal Kalman filter. Kalman filter is used to find 

optimal estimates of system states on the bases of 

the system model represented in a convenient state 

space form as follows:  

( ) ( , 1) ( 1) ( , 1) ( 1) ( ),k k k k k k k k      x A x B u w  (2) 
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where x(k) is n-dimensional vector of system states; 

k 0,1,2,...  is discrete time; u(k  1) is m-dimensio-

nal vector of deterministic control variables; ( )kw  is 

n-dimensional vector of external random disturban-

ces; ( , 1)k k A  is (n  n)-matrix of system dynamics; 

B(k, k  1) is (n  m)-matrix of control coefficients. 

The double argument (k, k  1) means that the vari-

able or parameter is used at the moment k , but its 
value is based on the former (earlier) data proces-

sing including moment ( 1k  ). Usually the matrices 
A and B are written with one argument like A(k),  

and ( ),kB  to simplify the text. Obviously stationary 

system model is described with constant parameters 

like A, and B. As far as matrix A  is a link between 
two consequent system states, it is also called state 
transition matrix. Discrete time k and continuous 
time t are linked to each other via data sampling 

time sT : .st kT  In the classic problem statement 

for optimal filtering the vector sequence of external 
disturbances w(k) is supposed to be zero mean white 

Gaussian noise with covariance matrix Q , i.e. the 

noise statistics are as follows: 

[ ( )] 0 ; [ ( ) ( )] ( ) ,T
kjE k k E k j k   w w w Q  

where kj  is Kronecker delta-function: 
0,

1,
kj

k j

k j

  


; 

( )kQ  is positively defined covariance (n  n)-matrix. 

The diagonal elements of the matrix are variances 

for the components of disturbance vector w(k). Ini-

tial system state 0x  is supposed to be known and the 

measurement equation for vector ( )kz  of output va-

riables is described by the equation:  

                 ( ) ( ) ( ) ( ),k k k k z H x v                (3) 

where H(k) is (r  n) observation (coefficients) mat-

rix; v(k) is r-dimensional vector of measurement 

noise with statistics: 

[ ( )] 0, [ ( ) ( )] ( ) ,T
kjE k E k j k  v v v R  

where R(k) is (r  r) positively defined measurement 

noise covariance matrix, the diagonal elements of 

which represent variances of additive noise for each 

measurable variable. The noise of measurements is 

also supposed to be zero mean white noise se-

quence that is not correlated with external dis-

turbance w(k) and initial system state. For the   

system (2), (3) with state vector x(k) it is necessary 

to find optimal state estimate ( )kx


 at arbitrary     

moment k as a linear combination of estimate 

( 1)k x  at the previous moment (k  1) and the last 

measurement available, z(k). The estimate of state 

vector ( )kx


 is computed as optimal one with minimi-

zing the expectation of the sum of squared errors, i.e.:  

 [( ( ) ( )) ( ( ) ( ))] min,T

K
E k k k k  x x x x

 
  (4) 

where x(k) is an exact value of state vector that 

can be found as deterministic part of the state 

equation (2); K is optimal matrix gain that is de-

termined as a result of minimizing quadratic crite-

rion (4).  

Thus, the filter is constructed to compute op-

timal state vector ( )kx


 in conditions of influence 

of external random system disturbances and measure-

ment noise. Here uncertainty arises when we don’t 

know estimates of covariance matrices Q and R. 

To solve the problem an adaptive Kalman filter is 

to be constructed that allows to compute estimates 

of Q


 and R


 simultaneously with the state vector ( ).kx


 

Another choice is in constructing separate algorithm 

for computing the values of Q


 and .R


 A convenient 

statistical algorithm for estimating the covariance 

matrices was proposed [11]:  

1 1
1 1 2

1

1
[ ( )( ) ],

2

,

T

T

   

  

R B A B B A

Q B R A R A

   

   
 

where 1 {[ ( ) ( 1)][ ( ) ( 1)] }TE k k k k    B z A z z A z


; 

2 2
2 {[ ( ) ( 2)][ ( ) ( 2)] }.TE k k k k    B z A z z A z


  

The matrices Q


 and R


 are used in the opti-

mal filtering procedure as follows:  

#( ) ( 1) ; ( ) ( )[ ( ) ] ;

( ) [ ( )] ( ), 0, 1, 2, ...,

Tk k k k k

k k k k

     

   

S A P A Q S S R

P I S

 

 

where S(k) and P(k) are prior and posterior co-

variance matrices of estimates errors respectively; 

the symbol “#” denotes pseudo-inverse; TA  means 

matrix transposition; (k) is a matrix of intermedi-

ate covariance results. The algorithm was success-

fully applied to the covariances estimating in many 

practical applications. The computation experiments 

showed that the values of (k) become stationary 

after about 20—25 periods of time (sampling peri-

ods) in a scalar case, though this figure is growing 

substantially with the growth of dimensionality of 

the system under study. It was also determined that 

the parameter estimators are very sensitive to the 

initial conditions of the system. The initial condi-
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tions should differ from zero enough to provide 

stability for the estimates generated.  
Other appropriate instruments for taking into 

consideration the uncertainties are fuzzy logic, neu-
ro-fuzzy models, Bayesian networks, appropriate types 
of distributions etc. Some of statistical data uncer-
tainties such as missing measurements, extreme va-
lues and high level jumps of stochastic origin could 
be processed with appropriately selected statistical 
procedures. There exists a number of data imputation 
schemes that help to complete the sets of the data 
collected. For example, very often missing measure-
ments for time series could be generated with ap-
propriately selected distributions or in the form of 
short term forecasts. Appropriate processing of jumps 
and extreme values helps with adjusting data non-
stationarity and to estimate correctly the probabil-
ity distribution for the stochastic processes under 
study.  

Processing data with missing observations (data 
are in the form of time series). As of today for the 
data in the time series form the most suitable im-
putation techniques are as follows: simple avera-
ging when it is possible (when only a few values are 
missing); generation of forecast estimates with the 
model constructed using available measurements; 
generation of missing estimates from distributions 
the form and parameters of which are again deter-
mined using available part of data and expert esti-
mates; the use of optimization techniques, say ap-
propriate forms of EM-algorithms (expectation maxi-
mization); exponential smoothing etc. It should also 
be mentioned that optimal Kalman filter can also 
be used for imputation of missing data because it 
contains “internal” forecasting function that pro-
vides a possibility for generating quality short-term 
forecasts [12]. Besides, it has a feature of fusion the 
data coming from alternative sources and impro-
ving this way the quality of state vector and its 
forecasts.  

Further reduction of this uncertainty is possible 
thanks to application of several forecasting tech-
niques to the same problem with subsequent com-
bining of separate forecasts using appropriate weigh-
ting coefficients. The best results of combining the 
forecasts is achieved when variances of forecasting 
errors for different forecasting techniques do not dif-
fer substantially (at any rate the orders of the vari-
ances should be the same).  

Coping with uncertainties of model parameters 
estimates. Usually uncertainties of model parameter 
estimates such as bias and inconsistency result from 
low informative data, or data do not correspond to 
normal distribution, what is required in a case of LS 
application for parameter estimation. This situation 

may also take place in a case of multicollinearity of 
independent variables and substantial influence of 
process nonlinearity that for some reason has not 
been taken into account when model was con-
structed. When power of the data sample is not 
satisfactory for model construction it could be ex-
panded by applying special techniques, or simula-
tion is hired, or special model building techniques, 
such as group method for data handling (GMDH), 
are applied. Very often GMDH produces results of 
acceptable quality with rather short samples. If data 
do not correspond to normal distribution, then ML 
technique could be used or appropriate Monte Carlo 
procedures for Markov Chains (MCMC) [13]. The 
last techniques could be applied with quite accep-
table computational expenses when the number of 
parameters is not large.  

Dealing with model structure uncertainties. 
When considering mathematical models it is con-
venient to use proposed here a unified notion of   
a model structure which we define as follows:       

S { , , , , , , }r p m n d w l , where r is model dimen-

sionality (number of equations); p is model order 
(maximum order of differential or difference equa-
tion in a model); m is a number of independent 
variables in the right hand side of a model; n is a 
nonlinearity and its type; d is a lag or output reac-
tion delay time; w is stochastic external disturbance 
and its type; l are possible restrictions for the vari-
ables and/or parameters. When using DSS, the mo-
del structure should practically always be estimated 
using data. It means that elements of the model 
structure accept almost always only approximate va-
lues. When a model is constructed for forecasting 
we build several candidates and select the best one 
of them with the set of model quality statistics. 
Generally we could define the following techniques 
to fight structural uncertainties: gradual improvement 
of model order (AR(p) or ARMA (p, q)) applying 
adaptive approach to modeling and automatic search 
for the “best” structure using complex statistical 
quality criteria; adaptive estimation (improvement) 
of input delay time (lag) and data distribution type 
with its parameters; describing detected process 
nonlinearities with alternative analytical forms with 
subsequent estimation of model adequacy and fore-
cast quality. As another example of complex statisti-
cal model adequacy and forecast quality criterion 
could be the following:  

2 2

1

|1 | ln ( )

| 2 | ln (1 ) min,
i

N

k

J R e k

DW MAPE U





 
     

  

      




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where 2R  is a determination coefficient; DW  is Dur-

bin-Watson statistic; MAPE is mean absolute per-

centage error for forecasts; 2

1 1

( ) [ ( )
N N

k k

e k y k
 

   

2( )]y k   is a sum of squared model errors; U  is 

Theil coefficient that measures forecasting charac-
teristic of a model; ,   are appropriately selected 

weighting coefficients; i


 is parameter vector for 

the i th  candidate model. A criterion of this type 

is used for automatic selection of the best candi-

date model. The criterion also allows operation of 

DSS in the automatic adaptive mode. Obviously, 

other forms of the complex criteria are possible. 

While constructing the criterion it is important not 

to overweigh separate members in the right hand 

side.  

Coping with uncertainties of a level (amplitude) 

type. The use of random (i.e. with random ampli-

tude or a level) and/or non-measurable variables 

leads to necessity of hiring fuzzy sets for describing 

such situations. The variable with random amplitude 

can be described with some probability distribution 

if the measurements are available or they come for 

analysis in acceptable time span. However, some 

variables cannot be measured (registered) in princip-

le, say amount of shadow capital that “disappears” 

every month in offshore, or amount of shadow sala-

ries paid at some company, or a technology parame-

ter that cannot be measures on-line due to absence 

of appropriate gauge. In such situations we could as-

sign to the variable a set of possible values in the 

linguistic form as follows: capital amount  {very low, 

low, medium, high, very high}. There exists a com-

plete necessary set of mathematical operations to be 

applied to such fuzzy variables. Finally, fuzzy value 

could be transformed into usual “exact” form using 

known techniques. 

Processing probabilistic uncertainties. To fight 

probabilistic uncertainties it is possible to hire Baye-

sian approach that helps to construct models in the 

form of conditional distributions for the sets of 

random variables. Usually such models represent the 

process (under study) variables themselves, stocha-

stic disturbances and measurement errors or noise. 

The problem of distribution type identification also 

arises in regression modeling. Each probability dis-

tribution is characterized by a set of specific values 

that random variable could take and the probabili-

ties for these values. The problem is in the distribu-

tion type identification and estimating its parame-

ters. The probabilistic uncertainty (will some event 

happen or not) could be solved with various mo-

dels of Bayesian type. This approach is known as Ba-

yesian programming or paradigm. The generalized 

structure of the Bayesian program includes the fol-

lowing steps: (1) problem description and statement 

with putting the question regarding estimation of 

conditional probability in the form: ( | , )ip X D Kn , 

where iX  is the main (goal) variable or event; the 

probability p should be found as a result of appli-

cation of some probabilistic inference procedure; 

(2) statistical (experimental) data D and knowledge 

Kn are to be used for estimating model and pa-

rameters of specific type; (3) selected and applied 

probabilistic inference technique should give an an-

swer to the question put above; (4) analysis of qua-

lity of the final result. The steps given above are to 

some extent “standard” regarding model construct-

ing and computing probabilistic inference using sta-

tistical data available. This sequence of actions is na-

turally consistent with the methods of cyclic struc-

tural and parametric model adaptation to the new 

data and operating modes (and possibly expert es-

timates).  

One of the most popular Bayesian approaches 
today is created by the models in the form of static 
and dynamic Bayesian networks (BN). Bayesian net-

works are probabilistic and statistical models repre-
sented in the form of directed acyclic graphs (DAG) 
with vertices as variables of an object (system) un-

der study, and the arcs showing existing causal re-
lations between the variables. Each variable of BN 
is characterized with complete finite set of mutu-

ally excluding states. Formally BN could be repre-
sented with the four following components: 

, , , ,  N V G P T  where V stands for the set of 

model variables; G represents directed acyclic graph; 

P is joint distribution of probabilities for the graph 

variables (vertices), 1{ ,..., };nX XV  and T denotes 

conditional and unconditional probability tables for 
the graphical model variables [14, 15]. The rela-

tions between the variables are established via ex-
pert estimates or applying special statistical and 
probabilistic tests to statistical data (when available) 

characterizing dynamics of the variables.  

The process of constructing BN is generally 

the same as for models of other types, say regres-

sion models. The set of the model variables should 

satisfy the Markov condition that each variable of 

the network does not depend on all other variables 

but for the variable’s parents. In the process of BN 

constructing first the problem is solved of compu-
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ting mutual information values between all vari-

ables of the net. Then an optimal BN structure is 

searched using acceptable quality criterion, say 

well-known minimum description length (MDL) 

that allows analyzing and improving the graph (mo-

del) structure at each iteration of the learning algo-

rithm applied. Bayesian networks provide the follow-

ing advantages for modeling: the model may include 

qualitative and quantitative variables simultaneously 

as well as discrete and continuous ones; number  

of the variables could be very large (thousands); the 

values for conditional probability tables could be com-

puted with the use of statistical data and expert es-

timates; the methodology of BN constructing is di-

rected towards identification of actual causal rela-

tions between the variables hired what results in high 

adequacy of the model; the model is also operable in 

conditions of missing data.  

To reduce an influence of probabilistic and 

statistical uncertainties on models quality and the 

forecasts based upon them it is also possible to use 

the models in the form of Bayesian regression 

based on analysis of actual distributions, of model 

variables and parameters. Consider a simple two 

variables regression  

1 2( ) | ( ) ( ) ( ), 0,1,..., .y k x k x k u k k n     

It is supposed that of random values 1,..., nu u  are 

independent and belong, for example, to normal dis-

tribution, 2{ ( )} (0, );~ uu k N   here vector of unknown 

parameters includes three elements, 1 2( , , )T
u     . 

The likelihood function for dependent variable 

1( ,..., )T
ny yy  and predictor 1( ,..., )T

nx xx  with-

out proportion coefficient is determined as follows:  

1 2

2
1 22

1

( | , , , )

1 1
exp [ ( ) ( )] .

2

u

N

N
ku u

L

y k x k


  

       
   



y x

 

Using simplified (non-informative) distribu-

tions for the model parameters  

1 2 1 1 2 2 3

1 1

2 21
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( , , ) ( ) ( ) ( ),

( ) const,

( ) const,

( ) 1/ ,

u u
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g g g g
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and Bayes theorem it is possible to find joint poste-

rior distribution for the parameters in the form [16]:  

1 2 2
1

2
1 2 1 2

1 1 1
( , , | , ) exp ( ( )

2

( )) ], , , 0 .

N

u N
k

u

h x y y k

x k




    

  

              
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Maximum likelihood estimates for the model 

parameters are determined as follows:  
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with 

unbiased sample estimate of variance:  

2 2 2
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u k
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Joint posterior density for the model parame-

ters corresponds to two dimensional Student distri-

bution:  

2 2
1 1 2 1 1

2 2
2 2 1
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This way we get a possibility for using more 

exact distributions of model variables and parameters 

what helps to enhance model quality. Using new ob-

servation x 


 and prior information regarding particu-

lar model it is possible to determine the forecast in-

terval for the dependent variable, y 


, as follows:  

1 2 1 2 1 2

( | )

( | , , , ) ( , , )| , ) , , .

p y x

L y x h d d d

 

           x y
 

Another useful Bayesian approach is in hier-

archical modeling that is based on a set of simple 

conditional distributions comprising one model. The 

approach is naturally combined with the theory of 

computing Bayesian probabilistic inference using mo-

dern computational procedures [17]. The hierarchi-

cal models belong to the class of marginal models 

where the final result is provided in the form of a 

distribution P (y), where y is available data vector. 

The models are formed from the sequence of con-

ditional distributions for selected variables includ-

ing the hidden ones. The hierarchical representation 

of parameters usually supposes that data, y, is situ-
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ated at the lower (first) level, model parameters (se-

cond level) ( , 1, 2,..., ),i i n   
 

2( , )~i N   ,
 

determine distributions of dependent variables 
2( , ), 1,2,..., ,~i iy N i n    and parameters { }i  

are determined by the pair, 2( , ),   of the third level. 

Supposing the parameters 2  and 2  accept known 

finite values, and parameter   is unknown with the 

prior ,  then joint prior density for ( , )   could be 

presented in the form: ( ) ( | ),ii       and the 

prior for parameter vector  will be defined by the 

integral: ( ) ( ) ( | ) .i
i

p d          

Generation and implementation of alternatives 
with the DSS 

Decision making process includes rather sophi-

sticated procedures that could be partially or com-

pletely iterative, i.e. executed repeatedly when the al-

ternative found is not satisfactory for a decision ma-

king person. DSS could return automatically (or on 

DMP initiative) to the previous stages of available 

data and knowledge analysis.  

The whole process of making and implement-

ing decisions could be considered as consisting of 

the stages given below.  
1 — A thorough analysis of the decision prob-

lem using all available sources of information, col-

lection of data and knowledge relevant to the prob-

lem. At this stage it is also important to consider 

and use former solutions to the problem if such are 

available. The information regarding former solutions 

of similar problem could be helpful for correct prob-

lem statement, to select appropriate techniques for 

data analysis, to speed up alternatives generation, and 

to decline the alternatives that turned out to be in-

effective in the past.  
2 — Selection of a class (classes) of mathemati-

cal models for the problem description, and analysis 

of the possibility for the use of available (previously 

developed) models. The models could belong to dif-

ferent classes as far as they can be formulated in 

continuous or discrete time, be linear or nonlinear, 

they could be developed according to the structural 

or functional approach etc. In some cases it is nec-

essary to construct complex simulative model that 

would include a set of simpler models of different 

classes.  
3 — Development of new models for the prob-

lem (process, object, system) under study what in-

cludes structure and parameter estimation for can-

didate models using available data (and possibly 

expert estimates) and knowledge of various types. 
The alternative structures of candidate models pro-
vide a possibility for selecting the best one of them 

for generating alternative decisions (loss estimates, 
forecasts, probability of risk estimates, control ac-
tions etc) on their bases.  

4 — Analysis of the candidate models construc-

ted and selecting the best one of them with applica-
tion of a set of statistical quality criteria and expert 

estimates. At this stage again more than one model 
could be selected for the further use as far as the 
best model (for a particular application) can be 

found only after application of the candidates for 
solving particular problem, i.e. after alternatives gene-
rating and estimating possible consequences of their 

implementation.  
5 — Application of the model (models) se-

lected for solving the problem of risk estimation 

and/or control (or management) problem (when ne-
cessary). If the forecasts or controls computed are not 
satisfactory we should return back to the stage one 

or stage three, and repeat the process of model con-
structing. At this stage another set of statistical qua-
lity criteria should be applied to the analysis of risk 

estimates, forecasts or controls.  
6 — Generating a set of alternatives with the 

use of the model (models) constructed and various 
admissible initial conditions and constraints on vari-

ables. In a case of controls generating the alterna-
tives could be built with different optimality criteria, 
utility functions or other criteria.  

7 — Analysis of the alternatives generated with 

the experts of an enterprise or a company, and final 
selection of the best one for practical implementa-

tion. In a case when no alternative is acceptable 
we should return back to the model constructing or 
alternative generating stages. New knowledge or data 

could be required for the next iteration of compu-
ting new decision alternatives.  

8 — Planning of actions and estimation of fi-

nancial, material and human resources that are nec-

essary for implementation of the alternative selected. 
Determining of the time horizon (horizon of con-
trol) necessary for implementing the decision made.  

9 — Implementation of the decision made: 

current monitoring of availability and spending the 
necessary resources, estimation of necessary time 

frames, registering and quality estimation of inter-
mediate and final results.  

10 — Application of possible analytic and ex-

pert quality criteria to estimation of final results.  
11 — Analysis of the final results by the com-

pany experts, and final elucidation of advantages 
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and disadvantages of the alternative implemented; 

analysis of the decision making and implementing 
process, and forming forecasts (foresights) for the 
future.  

12 — Writing the final report on the tasks per-

formed.  

Data, model and forecasts quality criteria 

To achieve reliable high quality final result of 
risk estimation and forecasting at each stage of 
computational hierarchy separate sets of statistical 
quality criteria have been used. Data quality con-
trol is performed with the following criteria:  

— database analysis for missing values using de-

veloped logical rules, and imputation of missed va-
lues with appropriately selected techniques;  

— analysis of data for availability of outliers 

with special statistical tests, and processing of out-
liers to reduce their negative influence on statistical 
properties of the data available;  

— normalizing of data in the selected range in 

a case of necessity;  

— application of low-order digital filters (usu-

ally low-pass filters) for separation of observations 
from measurement noise;  

— application of optimal (usually Kalman) fil-

ters for optimal state estimation and fighting sto-
chastic uncertainties;  

— application of principal component method 

to achieve desirable level of orthogonalization be-
tween the variables selected;  

 — computing extra indicators for the use in 

regression and other models (say, moving average 
processes based upon measurements of dependent 
variables).  

It is also useful to test how informative is the 
data collected. Very formal indicator for the data 
being informative is its sample variance. It is con-
sidered formally that the higher is the variance the 
richer is the data with information. Another crite-
rion is based on computing derivatives with a poly-
nomial that describes data in the form of a time 
series. For example, the equation given below can 
describe rather complex process with nonlinear trend 
and short-term variations imposed on the trend 
curve:  
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where y (k) is basic dependent variable; ,i ia c  are 

model parameters; 0,1,2,...k   is discrete time; ( )k  

is a random process that integrates the influence of 

external disturbances to the process being modeled 

as well as model structure and parameters errors. 

Autoregressive part of the model describes the de-

viations that are imposed on a trend, and the trend 

itself is described with the m-th order polynomial 

of discrete time k. In this case maximum number 

of derivatives could be m, though in practice actual 

number of derivatives is defined by the largest num-

ber i of parameter ,ic  that is statistically significant. 

To select the best model constructed the follow- 

ing statistical criteria are used: determination coef-

ficient (R 

2); Durbin-Watson statistic (DW); Fisher    

F-statistic; Akaike information criterion (AIC), and 

residual sum of squares (SSE). The forecasts qua-

lity is estimated with hiring the criteria mentioned 

in [1, 2]. To perform automatic model selection the 

above mentioned combined criteria (1) could be 

hired. The power of the criterion was tested experi-

mentally and proved with a wide set of models and 

statistical data. Thus, the three sets of quality criteria 

are used to insure high quality of final result.  

Example of the DSS application  

One of the forecasting problems solved with 

the DSS proposed was estimation of stock prices 

forecasts with relation to the given level set by the 

constant c. The problems of this type are often solved 

when the stock trading operations are performed. 

The models constructed for the purpose and the 

forecasting results are given in Table. Three lower 

rows of the table characterize the results of appli-

cation of dynamic Bayesian networks.  

The forecasting results achieved with the dy-

namic Bayesian network were compared to the lo-

gistic regression combined with the multiple linear 

regression:  

1

1

( )

min 1 ( )
( ) ,

1

x k

x k

e
g x

e



 

1( ) 0.626 0.424 2( ) 0.616 ( )

0,81 2( ) 0.773 3( ) 1.739 ( ),

x k S k P k

R k R k yf k

     

     

 

   

where 2( ), ( ), 2( ), 3( )S k P k R k R k
   

 are technical ana-

lysis indicators; ( )yf k  is the variable characterizing 

output of multiple regression, that accepts the value 

1 in a case of growing price, and 0 in a case of fal-

ling price. Thus, the best price forecasting model in 

this case turned out to be logistic regression with 

Backward Selection of independent variables but for 
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the indicator ( ),yf k  which is a forecast computed 

with multiple regression ( p  0.869). The best results 

of forecasting with DBN were achieved with the 

“memory depth” value of 5 and the use of linear 

Kalman filter ( p  0.871). It should be noted that 

computational expenses in latter case were much 

higher than in the case of logistic regression applica-

tion. It was also established that the forecasts quality 

is dependent on the value of the threshold c, se-

lected as a basis for forecasting. 

Table. Results of modeling and forecasting 

Threshold 
value c 

The best 
model 

Threshold 
value for  

probability 

Probability 
of forecast 
coincidence 

with the  
true direc-
tion (p) 

0.0075 LR (BS) + МR 0.47 0.869 

0.0065 LR (FS) + МR 0.5 0.861 

0.0060 LR (BS) + МR 0.5 0.846 

0.0055 DT (CHAID) 0.45 0.832 

0.0050 LR (FS) + МR 0.52 0.831 

0.0045 LR (BS) + МR 0.52 0.828 

0.0040 LR (BS) + МR 0.43 0.826 

0.0035 LR (BS) + МR 0.49 0.822 

0.0010 LR (FS) + МR 0.34 0.732 

0.0005 LR (FS) + МR 0.4 0.710 

 0.0020 LR (BS) + МR 0.43 0.677 

 0.0025 LR (BS) + МR 0.47 0.699 

0.0075 DBN-3 0.52 0.729 

0.0075 DBN-3 + KF 0.52 0.837 

0.0075 DBN-5 + KF 0.52 0.871 

Abbreviations in the table : LR — logistic regression; MR — 

multiple regression; DT — decision tree; DBN — dynamic Baye-

sian network; KF — Kalman filter; FS — forward selection; BS — 

backward selection; CHAID — CHi-squared Automatic Interac-

tion Detector. 

Conclusions 

The general methodology was proposed for 

constructing DSS for mathematical modeling and 

forecasting of economic and financial processes that 

is based on the system analysis principles. As in-

strumentation for fighting possible structural, statis-

tic and parametric uncertainties the following tech-

niques are used: Kalman filter, various missing data 

imputation techniques, multiple methods for model 

parameter estimation, and Bayesian programming 

approach.  

The system proposed has a modular architec-

ture that provides a possibility for easy extension of 

its functional possibilities with new parameter esti-

mation techniques, forecasting methods, financial risk 

estimation procedures, and alternatives generation. 

High quality of the final result is achieved thanks 

to appropriate tracking of the whole computational 

processes at all stages of data processing: prelimi-

nary data processing, model structure and parame-

ter estimation, computing of short- and middle-term 

forecasts as well as thanks to convenient for a user 

intermediate and final results representation. The sys-

tem is based on the ideologically different tech-

niques of modeling and forecasting what creates a 

convenient basis for combination of various appro-

aches to achieve the best results. The examples of the 

system application show that it could be used suc-

cessfully for solving practical problems of nonlinear 

nonstationary processes forecasting. The results of 

computing experiments lead to the conclusion that 

today nonlinear regression, Bayesian networks and the 

models resulted from application of regression analy-

sis are quite acceptable instruments for short-term 

forecasting. It also should be stressed that the DSS 

constructed turned out to be very useful instrument 

for a decision maker that helps to perform quality 

processing of statistical data using different techni-

ques, generate alternatives and to select the best one 

with a set of appropriate quality criteria. The system 

performs tracking of the whole computational 

process using separate sets of statistical quality crite-

ria at each stage of decision making: quality of data, 

models and forecasts or risk estimates. 

The DSS proposed could be used for support 

of decision making in various areas of scientific and 

practical activities including strategy development for 

industrial and financial enterprises, investment com-

panies etc. Further extension of the system functions 

is planned with new forecasting techniques based on 

probabilistic approach, fuzzy sets, neuro-fuzzy mo-

dels. 
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П.І. Бідюк, О.М. Трофимчук, О.П. Гожий, О.П. Бідюк  

ОБРОБКА НЕВИЗНАЧЕНОСТЕЙ ПРИ МОДЕЛЮВАННІ НЕСТАЦІОНАРНИХ ЧАСОВИХ РЯДІВ З ВИКОРИСТАННЯМ 

СИСТЕМ ПІДТРИМКИ РІШЕНЬ 

Проблематика. Прогнозування нелінійних нестаціонарних часових рядів (ННЧР) – важлива задача для економіки, марке-
тингу, промисловості, екології та багатьох інших галузей науки і практичної діяльності. Для успішного розв’язання цієї задачі не-
обхідно розробляти сучасні комп’ютерні системи підтримки прийняття рішень (СППР), які дадуть можливість отримувати надійні 
оцінки прогнозів в умовах наявності невизначеностей різних типів і природи.  

Мета дослідження. Розробка вимог до сучасних СППР та їх формальне подання; аналіз типів невизначеностей, харак-
терних для процесів побудови математичних моделей та прогнозування; вибір методів для врахування можливих невизначено-
стей; ілюстрація застосування системи до розв’язання задачі прогнозування гетероскедастичних ННЧР на основі статистичних 
даних.  

Методика реалізації. Для досягнення поставленої мети використано такі методи: системний підхід до аналізу статистич-
них даних; статистичний підхід до ідентифікації та врахування можливих невизначеностей; алгоритми калмановської фільтрації; 
підхід на основі байєсівського програмування та множини статистичних критеріїв адекватності моделей і якості прогнозів.  

Результати дослідження. Запропоновано формальний опис СППР та вимоги до їх розробки; встановлено класи матема-
тичних методів, які необхідні для успішної реалізації СППР; запропоновано деякі підходи до формального врахування ймовірніс-
них, статистичних і параметричних невизначеностей і подано ілюстративний приклад застосування СППР.  



36 Наукові вісті НТУУ "КПІ" 2016 / 5 

 

Висновки. Системний підхід до створення СППР для розв’язання задач прогнозування нелінійних нестаціонарних часо-
вих рядів дає можливість успішно розв’язати поставлену задачу. Використовуючи запропоновану систему, можна враховувати 
невизначеності ймовірнісного, статистичного і параметричного типів і обчислювати високоякісні оцінки коротко- та середньост-
рокових прогнозів ННЧР. Запропонований підхід має хороші перспективи для подальшого розвитку і розширення його можливостей.  

Ключові слова: прогнозування часових рядів; системний підхід; ймовірнісні, статистичні і параметричні невизначеності; 
система підтримки прийняття рішень. 

П.И Бидюк., А.Н.Трофимчук, А.П.Гожий, А.П. Бидюк  

ОБРАБОТКА НЕОПРЕДЕЛЕННОСТЕЙ ПРИ МОДЕЛИРОВАНИИ НЕСТАЦИОНАРНЫХ ВРЕМЕННЫХ РЯДОВ С 

ИСПОЛЬЗОВАНИЕМ СИСТЕМ ПОДДЕРЖКИ РЕШЕНИЙ 

Проблематика. Прогнозирование нелинейных нестационарных временных рядов (ННВР) – важная задача для экономи-
ки, маркетинга, промышленности, экологии и многих других отраслей науки и практической деятельности. Для успешного ре-
шения этой задачи необходимо разрабатывать современные компьютерные системы поддержки принятия решений (СППР), 
которые дадут возможность получать надежные оценки прогнозов в условиях наличия неопределенностей различных типов и 
природы.  

Цель исследования. Разработка требований к современным СППР и их формальное представление; анализ типов не-
определенностей, характерных для процессов построения математических моделей и прогнозирования; выбор методов учета 
возможных неопределенностей; иллюстрация применения системы для решения задачи прогнозирования гетероскедастических 
ННВР с помощью статистических данных.  

Методика реализации. Для достижения поставленной цели использованы такие методы: системный поход к анализу 
статистических данных; статистический поход к идентификации и учету возможных неопределенностей; алгоритмы калманов-
ской фильтрации; поход на основе байесовского программирования и множества статистических критериев адекватности мо-
делей и качества прогнозов.  

Результаты исследования. Предложены формальное описание СППР и требования к их разработке; определены клас-
сы математических методов, необходимых для успешной реализации СППР; предложены некоторые подходы к формальному 
учету вероятностных, статистических и параметрических неопределенностей; приведен иллюстративный пример использова-
ния СППР.  

Выводы. Системный подход к созданию СППР для решения задач прогнозирования нелинейных нестационарных вре-
менных рядов позволяет успешно решать поставленную задачу. Используя предложенную систему, можно учитывать неопре-
деленности вероятностного, статистического и параметрического типов и вычислять высококачественные оценки краткосроч-
ных и среднесрочных прогнозов ННВР. Предложенный подход имеет хорошие перспективы для дальнейшего развития и рас-
ширения его возможностей.  

Ключевые слова: прогнозирование временных рядов; системный подход; вероятностные, статистические и параметри-
ческие неопределенности; система поддержки принятия решений. 
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