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EXISTENCE OF MOMENTS OF EMPIRICAL VERSIONS
OF HSU—-ROBBINS—BAUM—-KATZ SERIES

Background. We study the so called empirical versions of Hsu—Robbins and Baum—Katz series that are the basic no-
tion of the classical theory of complete convergence.

Objective. The aim of the paper is to find necessary and sufficient conditions for the almost sure convergence of em-
pirical Baum—Katz series. These conditions are expressed in terms of the existence of certain moments of the under-
lying random variables.

Methods. For proving our results we develop some new technique based on truncation and studying the truncated
random variables. A sufficient ingredient of our approach is to show that the behavior of the truncated versions and
the original ones is the same. Despite some similarity between the original series and its empirical version, the meth-
ods for achieving the results are quite different.

Results. We find necessary and sufficient conditions for the existence of higher moments of empirical versions. A spe-
cial attention is paid to the case of multi-indexed sums. The latter case differs essentially from the one-dimensional
case, since the space of indices is not completely ordered and thus any approach based on the first hitting moment
does not work here.

Conclusions. The results obtained in the paper may serve as a base for further studies of empirical versions that could
be used in statistical procedures of estimating an unknown variance.

Keywords: complete convergence for sums of independent identically distributed random variables; empirical Hsu—

Robbins and Baum—Katz series; multi-indexed sums; regularly varying weights.

Introduction

We consider a sequence of partial sums of in-
dependent identically distributed random variables
and study the complete convergence that general-
izes the almost sure convergence and that in prob-
ability. The latter two types of convergence of nor-
malized sums are called the law of large numbers
and strong law of large numbers, respectively.
Studies of the complete convergence are initiated
in [1]. Further results on complete convergence
can be found in [2—5].

A special attention in our paper is paid to the
case of multi-indexed sums and to the rate of con-
vergence. Some results for multi-indexed sums can
be found in [6—12]. A survey of earlier results is
given in the monograph [13].

Related to our results is the so called empiri-
cal convergence that can be used to construct con-
sistent estimators of an unknown variance. The
empirical versions of a series represent some ran-
dom variables whose expectation equals the sum of
the corresponding series and this creates an im-
pression that the limiting properties of the series
and its empirical version are similar. Sometimes
this indeed is the case, however many problems
show different behavior of these two objects.

Since the first moment of an empirical ver-
sion of a series equals its mathematical expecta-
tion, a natural question is whether or not the same
happens with higher moments. The situation here
is challenging, since higher moments may not even
exist, while the corresponding series make sense.
We find conditions for the existence of higher mo-
ments and obtain a relationship between this prob-
lem and complete convergence. Moreover, we find
conditions for several cases where the weighted
empirical versions possess higher moments.

For proving our results we develop some new
technique based on truncation and studying the
truncated random variables. A sufficient ingredient
of our approach is to show that the behavior of the
truncated versions and the original ones is the
same.

Research objectives

The main aim of the paper is to study the al-
most sure convergence of empirical Hsu—Robbins
and Baum—Katz series with weights. Conditions for
the convergence are expressed in terms of the exis-
tence of moments of underlying random variables.
The weights are assumed to be regularly varying.
Another aim of our investigation is to find neces-
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sary and sufficient conditions for the finiteness of
the basic characteristic of empirical series, namely
its expectation.

Previous results

Let X, be independent identically distributed
random variables indexed with d-dimensional pa-
rameter k = (k,...,k,). Their partial sums are de-
noted by §,. We consider the empirical analogs of
the Hsu—Robbins or Baum—Katz series, namely
we consider the random variables

Ny(e) = lenlﬁfl(lnl)l(lSnl >[n|* &)
"=

depending on parameters ¢>0,p>-1, a>1/2
where [/ denotes the indicator of a random event, ¢,
is a slowly varying function, and |n|=(n,...,n,).
We find moment conditions imposed on X, un-
der which the moments of N ,(¢) exist. Earlier re-
sults by Slivka and Severo [14] if d =1 and by
Gut [7] if d > 1 are particular cases.

We start with independent identically distrib-
uted random variables X, X,X,,... on some prob-
ability space (Q, X, P) with associated partial sums
S,=X;+X,+...+X,,neN. In this case, there
is an equivalence between strong law of large num-

bers and the existence of certain moments of X.
Theorem 1 (Kolmogorov (1933)).

S a.s.
_n_>u<:>E|X|<ooand EXZIJ
n

(Marcinkiewicz—Zygmund (1937) [15]).
For 1/2<a <1

a.s.
S—Z —»> pnoE|X|Y*<wand EX =p.
n

For the case a =1 it is well-known that a re-
lated equivalence relation holds true in the law of
iterated logarithm using the second moment. For
the complete convergence (being a somewhat stron-
ger notion of convergence than almost sure con-
vergence), the strong law of large numbers is again
equivalent to the existence of an appropriate mo-
ment condition.

Theorem 2 (Hsu—Robbins [1] and Erdés [16]).

> P(S, —nu|>en) <o

n=1

< EX? <o and EX = p.
for any ¢>0

The rate of convergence can be measured by
the convergence of the series

> n'P(|S, - nu|>en) with some y > 0.

n=l1

Below is a summary of results of various authors
(in particular, Baum and Katz [2], Spitzer [5], see
also the book [17]).

Theorem 3. If 1> o >1/2 and ya >1 the fo-

llowing two statements are equivalent
i) E|X|"<o and EX = 0;

ii) > n"*?P(S,| >en®) <o forany e >0. In
n=l1
addition, if ya >1 then the above two statements
are equivalent to
iii) ZnY“‘ZP sup [M] >¢ |< oo for any & > 0.
n=1 ken\ k¢

A more general series

S nPe,(mP(S,| 2 nt)

n=l1

is considered by Heyde and Rohatgi [4] with a con-
tinuous and strictly increasing slowly varying func-
tion ¢, and B> -1.

There are many papers devoted to these series
but we do not go deep into the history.

Multidimensional case

We will now consider the multindex case, i.e.,
a random field {X, k Zd}, X with independ-
ent identically distributed random variables and the
index set Zd, d >2. We use the positive integer

d-dimensional lattice with the coordinate-wise par-
tial ordering. As before, we discuss partial sums

Sp=> Xy, mneZ’
k<n
Finally, let |n|=n,,...,n, be the number of

lattice points in the rectangle with the right-upper
corner n. To deal with limit theorems one consid-
ers summation along the generalized hyperbolas
|k| =/ and counts the number of integer points in

these sets. Here we have

Mx)= Y 1~

[k|<x

- 1)'x(log x)4 x> o,

whereas d(j)=M(j)— M(j—-1) has a less regular
behavior and can only be estimated by
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whatever ¢ > 0 is (see [18]). However in sums with
smooth terms, the function d(j) behaves like the
corresponding power of the logarithm, i.e., like
(log /).

The function M(x) is involved in the mo-
ment conditions for the strong law of large num-
bers and complete convergence of multiple sums.
The following is an analogue of Theorem 1 for

d>1.
Theorem 4 (Smythe [11]).

S a.s.
2 5 as |n|o>ow
n|

S EM(X|)<wo and EX =p.

Note that EM(X|)<wo< E|X|(og* | X])9! <o,

where log* x =(1vlogx), x>0. The Marcinkie-
wicz—Zygmund normalization [n|*, o > %, is con-

sidered in[6]. More general normalizations are
considered in [10] and [9].
An analogue of Theorem 2 is given next.
Theorem 5 (Smythe [12]).

S P(S, |2 ¢[n]) <o

neN?

& E|X|M(X|) < and EX =0.

for all €>0

The series with weights |n|® and with the Mar-
1

o>,
2

are considered in [6]. Some other analogues of The-
orem 3 are considered in [10].

cinkiewicz—Zygmund normalization |n|,

Empirical versions of the Heyde—Rohatgi series

Case of d =1. We are interested in the em-
pirical versions of the Baum—Katz and Heyde—
Rohatgi series

> nPe (mI(S,|> n“e). (1)
n=1
Some questions concerning this series with
B=0 and ¢,(n)=1, n=1, are discussed in [14];
some analogs for the case of d >1 are considered
in [7].
The expectation of series(l) equals the
Baum—Katz or Heyde—Rohatgi series depending

on whether or not ¢, is involved in (1). Thus the ex-

istence of the expectation of the random variable (1)
is equivalent to the corresponding moment condition
in Theorem 3 or in[4]. In particular, the moment
condition depends on B and ¢,. In contrast, the

convergence of series (1) does not depend on either
of these parameters. Namely, if Znﬁél(n) diverges

and o > %, then (1) is finite almost surely if and

1
only if EX =0 and E|X|*< . This result is ex-
plained by the Marcinkiewicz—Zygmund strong
law of large numbers for sums (see Theorem 1).

For simplicity, consider for a moment the fol-
lowing counting variable

N(e) =3 1(S,| > n%),
n=1

the number of times |S,| is above the threshold
n ¢ for some (any) € > 0.

Closely related to this random variable is
L(¢) = argmax{n e N: |§,| > n*c}  describing the
last time when the threshold is passed. Note that

P(L(e) > j) = P(supM > s].
k>j k®

Summarizing what has been said above, we
prove the following result.
Lemma 1. For and any ¢ > 0,
i) L(g) is finite almost surely by Theorem 1.1
1
if E|X|*<o and EX =0.

ii) EL(z)<w by Theorem 1.3 with y =
o
2
provided that EX =0 and E|X|%< c.
iii) N(e) < L(g) hence N(g) is also almost

surely finite and its first moment exists provided
2

that E|X|*< oo,

Moments of order r of the random variables
L and N can also be investigated.

Theorem 6. Assume that aa=1 and r > 0.

Let r>1 and E|X|*'< . Then EN(e)" <
for any ¢ > 0 (Slivka and Severo [14]).
Let 0<r<1. If EN(¢)" <o for some ¢ >0,

then E|X| <o (Klesov and Stadtmuiller [19]).
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Let r>0. Then E|X|™*'<o is equivalent to
EL(e)" < o forall (some) € > 0. Moreover, EL(e)” <

<o forall ¢ >0 implies EN(e)” <o for all ¢>0
(Gut [17]).

Remark 1. Comparing i) and ii) in Theo-
rem 3.1 for the case of =1, we see that the mo-
ment condition on X and N(g) are equivalent.

We conjecture that this is true for all » > 0.
Case of d >1. Now consider for 1/2<a <1

the random variables

Ny = 3 1(S,|/Ik[*> e) ()

kez“
and
Ly(e) = argmax|k| : |, 1/ k|*> &),

Note that it no longer holds that N ;(g) < L,(¢)
but we have

N 4(e) < M(Ly(2)), (3)
whence P(L,(e) < j) <P(N () < M())) and
hence

Bl
P(ﬁg k" ZSJ
=P(L;(e) 2 j) 2 P(N 4(e) = M())) “4)

forany j e N.

The following result essentially by Gut [7] is
helpfull for the multiindex case and gives a first re-
sult about the moments of N ,(g).

Theorem 7. Let 1> a >1/2.

a) If EX =0 and E|X|(log*|X|)“" <, then
L,(e) <o and N ,(g) <o almost surely.

b) For ar >1, the following statements are
equivalent

EX =0, E[X|"(log"|X )" <<,
ijw-2p[sup |Sk|/|k|°‘>gJ <o
Jj=1 k>j

for all € > 0.
¢) For r > 0, we have
E[X|™! (log "X <o

& ELy(e) ! <o

and this implies
E(N () /(log N 4(£))*™) "™ <o,

The finiteness of L,(e) in statement a) fol-

lows from the strong law of large numbers for mul-
tiindexed random variables by Smythe [11] (see
Theorem 2.1). The almost sure finiteness of the
random variable N ;(¢) follows from (3).

Part c) is essentially using the probability ine-
quality from above (4) and the Baum—Katz theo-
rem in part a) with r replaced by r +1. One may
guess that this result is not optimal which we will
show below.

Main results: existence of moments of empirical
series

Let 7,() >0 denote a slowly varying function
on (0,o) (see e.g. [20] or [21]). We consider the
series

Ny(a,Bie) = Y k[P (kDTS > [k|* €}
kez?
with some B >0 and a >1/2. Without loss of ge-
nerality we may put /,(x) =1 on [0,1).

Theorem 8. Let ¢, be a slowly varying func-
tion and o >1/2 and B=>0. Assume that r>1.
Then EX =0 and

ELX (#0707 (1og * | X ) @17 7 (1X]/)" <00 (5)
imply
E(N ;(o,B;e))" <oo forany > 0. (6)

The same result holds for negative B but we

are able to prove it only for integer ». The method
used in the proof of Theorem 8 does not work for
negative B and thus we propose another method in

the proof of Theorem 9 that works for arbitrary
weights in place of |k|? ¢,(/k|) including the case
of B> 0. Nevertheless, we provide a particular pro-
of of Theorem 8, since it is much simpler and al-
lows us to obtain the result for arbitrary  (not
only for integer r).

Theorem 9. Let 7, be a slowly varying function
and a>1/2 and -1<B<0. Assume that r>1 is

an integer number. Then EX =0 and (5) im-
ply (6).
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Remark 2. There is a simple method to
prove (6) if 0 <r<1. Namely, given some fields
{w,} an {b,} of positive real numbers we have

E(Yw,I(S,2b,)" <Y wP(S,|>b,).

Applying this result with w, =|n|? 7 (In}),
B>-1 and b,=¢|n|* >0, 1/2<a<l, we

derive from Theorem 11 that (6) holds if EX =0
and

ELX|"P2/% (log *| X e (1X]Y*)" < oo,

This moment condition agrees with (5) if
r =1 but otherwise is worse than (5).

Empirical series without weights. The empirical
series without weights, namely

Ny(e) =2 IS | 2 k|* &}, (7
k

are of special interest. The finiteness of N ,(¢) for

all ¢>0 is equivalent to the strong law of large
numbers,

N, (e) <o forall ¢>0
< P(S, | = |k|% i.0.)=0.

The existence of moments of N ,(e) provides
even more information about .S .

Theorem 10. Let ye R and let 7/, >0 on
[0,00) be a slowly varying function. Suppose that

a>1/2, r>1 or r=1 and (¢/,(x))” >0 is non-
decreasing, then

E(X [ (log X )07 (e (X[
x (log]X)?"1))Y) < and E(X)=0
implies
E((N 4(g))" (£ (N 4(£)))") <o for any & >0,

where N ,(¢) is defined by (7).
Corollary 1. Let 7,(x)=log(x+2), 1/2<a<]l,
r>1, and y=—(d —1)r in Theorem 10. If

E[X|"/* <% and E(X)=0 (8)

then

E —Nd(g) r <
(log* N 4(e)*"! ’

where N ,(¢) is defined by (7).

Remark 3. Corollary 1 improves a result in [7]
where a =1 and the assumption

E|X["D(log*[X )™ < oo
and E(X)=0

is used instead of (8).
The following result provides a sufficient con-
dition for

E((N,(e))" <o forall &> 0. )
Corollary 2. Let 1/2<a <1 and ¢, =1. If
E|X |0/ (log " | X )@ < oo
and E(X)=0,
then (9) holds.

Main results: complete convergence

Let 7¢,() >0 denote a slowly varying function
on (0,0) as above (see e.g. [20, 21]) and X, X,,...
be iid copies of X with partial sums (S).

Theorem 11. Let 1/2 <a < 1. Suppose B> -1
or B =-1 together with

¢,(n)(logn)?" >8>0 (10)
for some & >0 and large n, then the series
YIkPe (KDP(S ] > k| €)
k
= Y kPe (k)d(k)P(S | > k“e) (11)
k=1

converges for all £ >0 if and only if EX =0 and
E|X |2/ (Qog | X )V (X [V*) <o (12)

Remark 4.

1. Note that (12) is still sufficient for (11) if
o >1 and in case B =-1 without assuming (10).

2. If d =1, this result for increasing continu-
ous functions ¢, is due to Heyde and Rohatgi [4].

3. The example ¢,(x)=1/log*log"x obeys

the assumption (1) for d>2. It is not clear
whether condition (10) is necessary for the case

B=-1.
4. By the uniform convergence theorem for slo-
wly varying functions (see Theorem 1.2.1 in [20])
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22" k', (k)d(k) = n~'¢,(n) 22 d(k).

k=n+1 k=n+l1

Since M(-) is a regularly varying function of
order 1,

QZHZ d(k) = M(2n) - M(n) ~ M(n), n— .
k=n+1

Thus (10) is equivalent to

f“ k=0 (k)d(k) 28>0 (13)

k=n+1

for some & > 0 and large n.
Proofs

Proof of Theorem 8. We begin with so-
me preparations. For any positive integer » let

I,={k:|k|<n and [S,|>|k|* ¢},
m=m, =card({,).
This set can be written as

I, =1k, ..k,
where the elements are ordered along the hyperbo-
las |k|=j, j=1,2,..., and therein in lexicographic
order. In general, i.e., for 4 >1, it is no longer
true that always |k, |>v, since several indices
k e I, at the same “hyperbola” |k|=v may occur
in I,. Nevertheless some lower bound for |k, | is
available. Namely, if |k, |= j, then

v < M(j) = M(k,|) < clk,|(log|k, )" (14)

with some positive ¢ > 0 and this implies that

A%
[k, |

C
(10g + V) d-1

for some different constant ¢ > 0.
Let a, = I(|S;|=|k|* ¢). From the setup just
considered we find that, by Hélder’s inequality,
r

(Z|k|ﬁ€1(|k|)ak] (i'kv“sgl(lkvbakv]
v=I

|k|<n

m
< m’_12|kv|3’€{(| k, Day

v=l1

m
<em™ Yk, [Pk, Day =2, (say)
v=lm/2]+1

with some positive constant c. Exploiting (14),
there exists some ¢ >0 (we use ¢ for different
constants without mentioning it furthermore) such

that i<clk;|(log|k; )" <c|k,|(log|k )" for
v >i, where i is the integer part of m /2. Thus

z

n

m
<c Y |k, 7 og [k, DUV T (K, Day,
v=[m/2]+1

m
<c) |k, [P dlog | k, PRk, Day,
v=1

=c > |k[*"(log k)P Kk ay.
K

Hence we may conclude by monotone con-
vergence and then summation along the hyperbolas

|k| =k that
ENd(BJS)r
<c Y k[P i k| log [k)PUVP(S,|

keN?

> k| &) <> kP (log k) DD (Kl) d(k)
k=1

< P(S,| > k). (15)

Now Theorem 8 follows from Theorem 11. [

Proof of Theorem 9. We use the follow-
ing auxiliary result. Its proof is given after the pro-
of of Theorem 9 is complete.

Lemma 2. Let {a,} be positive numbers such

that a, €[0,c] for some nonrandom ¢ >0 and let
{b,} be nonnegative numbers. Let r >1 be an in-
teger. Put

Then, for each n>1,

,
n n

(Zakbk] <c" 'Y ab B
k=l =l

Turning back to the proof of Theorem 9, con-
sider the sequence of random variables a;,a,,...

formed as follows: first we place all the indicators
I(|S(n)|>|n|* €) with |n|=1 (in fact, there is
only one indicator with such a property); the next
d(2) random variables among a,,a,,... are the in-
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dicators 7(|S(n)| >|n|* ¢) such that |n|=2 (in

fact, there are d(2) such indicators) and so on. Then

we consider the sequence of numbers {,} defined as

follows: if M(j—1) < k < M(j), then b, = jP7,(j).
Now, by Lemma 2,

<r!y > Ea,b, B}
J=L M(j-D<k<sM(j)

M=

akbkj <r!> Ea.b, B}
k=1

bl
R

:r!ipqulz VAVAAO) Ny

J=1 M(j-1)<ksM(j)

r-1
B k

<rUY RS, 2 %) (DB Hd().
=

Using Lemma 3 we obtain with a suitable
constant ¢ > 0

j
Byyy=2 2 b

=1 M(i-1)<k<M (i)
J B . . Bl . N d-1
=i ()d(i) < ¢ (j)(log ).
i=1

Combining with the latter bound, we find for
any ne N

[Zakbk] <r!1Y P(S;| = %))
k=1 j=1

x (¢, ()(log HT " d(j)
-0 P(S,|
=1

> j*e)j VDR () (log NV ().
Finally, we use Theorem 11 with

B—> B+1)(r—1)+p,1,(k) > ¢](k)(log k) DD
Thus (5) implies that

E(i akbkj
k=1

is uniformly bounded, whence we derive the statement
of Theorem 9, since the terms are nonnegative. [
Proof of Lemma 2. We have

n
r-1 r-1
<c"rl Y ay by Bi O
k=1

Proof of Theorem 10. Without loss of
generality we may assume that x’~!(/ »,(x))" is non-

decreasing and continuous (see Theorem 1.5.3 in [20]).
Fix n and use the same notation as in the proof of

Theorem 8. In particular, a, = 1(].S;|>|k|* €). De-
noting m = Z“(‘Sna « Wwe have

] g e

< ch’_lf H(v)7
v=l
(use Karamata’s theorem, see e.g. [20])

<Xk, ™ dog [k, DK Glog kD))"

v=l

=c X Ik og [kD“D Dty (K| (log | kD)) ay,

[kl<n

where in the second to last line we used (14) and
the assumption on ¢,. Passing to the expectation

and then to the limit as » — o, we obtain

o) [ zea)

<c Y [k|™" (log [k[)“ DD
keN‘
x (¢, (k|(log [K[) ™)) "P(S,| = k* &)
=Y k" (log k) U (1, (k(logk)Ty)
k=1

< d(K)P(S,| > k* ).

Now Theorem 11 completes the proof, note

that ¢,(x(log x)?) is slowly varying again as it
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follows from the definition and the uniform con-
vergence theorem for slowly varying functions (see,
e.g., Theorem 1.2.1 in [20]).

Proof of Theorem 11. Assume that (12)
holds. First we consider the case of symmetric ran-
dom variables. Then we deduce the general case
from this particular one.

According to the Kahane—Hofmann-Jgrgen-
sen inequality (Theorem 7.5 in [17])

P(S,| > k%) <ckP(X|>c,k®)
+ ¢5[P(S,| = c,k*)¥

for any j>1, where ¢,,c,,c5,c4 are some positive
constants depending on ¢ and j. Since min{2a,
(B+Dr+1}>1, one can choose a number 6 such
that

O<9<min{2 M}, Oa > 1.

’ o
Condition (12) implies that the moment
E(X|°%) exists, whence by Chebyshev’s inequality

1
O[kealj

in view of the estimate E|S,|°=OMkE(X|%).
Thus, for sufficiently large Jj,

ElS, " _

P(S,|=2c,k?%) < =
1S, 04k®) < LS

Y kP (RPAS,] > k)] <0
k=1

for all ¢ > 0. Furthermore,

ikﬁ+lf1(k)rd(k)P(|X| > ¢, k%) =
k=1

M

P(c,j* <|X|<cy(j + D) kPe (k)d(k). (16)

k<j

J

I
—_

Using the Karamata type Lemma 3 given be-
low, we obtain

> kPl (kyd(k) < ¢ "2 (j)(log j) !
k<j

(17)
for some ¢ > 0. Now we substitute bound (17) in (16):

Sk ()d(ROP(X | > e,k )
k=1

<) Pleyj* < |X]
=

<ey(j+1)*) P2 (log )47, (j) < o

if (12) holds. This completes the proof for the
symmetric case.

Passing to the general case, let X, denote
the symmetrization of the random variable X, and

{S,} be the sequence of partial sums of {X;}. Ob-

viously (12) holds for X *, too, and the part of the
theorem proved above implies that

o0

S kPL(K)d(KOP(S]| = k) < oo
k=1

for all £ > 0. Finally, we apply the symmetrization
inequality,

P(S;| > k%) > %quk —med(S,)| > k“c/2).

Since (5) implies the existence of the second
moment, med(S;)=o(k*). Combining this with
the latter two results, we conclude that

S KL (k)d(k)S PSS > k%) < oo
k=1 k=1

for all € >0 which completes the proof of Theo-
rem 11 in the general case.

Now assume that series (11) converges for
some ¢>0. We start with the symmetric case.
Then, by the maximal Litvy inequality,

P(IilaX |X, | >2n"%)
<n
< 2P(max S, | > n'/%) < 4P(S,| > n'/%),
<n
whence

Znﬁll(n)d(n)P(rilax |X,|>2n"%) < .

n=l1

Now, if ZZM kﬁll(k)d(k) >8>0 (this holds
in particular if B>-1) then it follows by the

same arguments as in [3], proof of Theorem 5,
P(r?ax |X,| = 2n'/“¢) - 0 that and for some con-
<n

stant ¢ > 0 and sufficiently large n > 1,
P(max | X, |=2n"%) =1-(1-P(X]|>2n""))"
<n

> cnP(|X| = 2n"/%)

by Lemma A.4.2 in [17] and thus, for some ¢ > 0,
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Znﬁll(n)d(n)P(nklgz( |X | =2n%)

n=l

> cinﬁ”ll(n)d(n)P(lﬂ > n)

n=1

where Y = (X /2¢)*. Using Lemma 3,
Znﬁﬂll(n)(log n) P <|Y|<n) <

n=l1
which is equivalent to
E Y|P (og Y )/ (Y ]) < oo.

In turn, this is equivalent to (12), since /; is a

slowly varying function.

Now we turn to the general case of non nec-
essarily symmetric random variables. Nevertheless
series (11) converges for their symmetric versions,

X}, say. The part of the theorem already proved
implies (12) for the symmetrized version X °. This,
in turn, implies (12) in the general case, since /, is
a slowly varying function. [J

Lemma 3. Let v > -1 and / be a slowly vary-

ing function. Then there exists a constant ¢ >0
such that

> kVI(k)d(k) < ¢j ¥ I(j)(log j) .
k<j
Proof of Lemma 3. We choose a number
§>0 and a slowly varying function 7 such that
-1<v-38<0 and
D) I(x)/I(x) > 1, x >
2) x®%(x) is nondecreasing.
Such a function /
Theorem 1.5.4].
Then, for some constants ¢’ >0 and ¢" > ¢/,

S kVIk)d(k) < ¢ kY (k)d (k)

k<j k<j

<L) k¥Pd(k) < I kVd (k).

k<j k<j

exists in view of [20,

For the latter sum, we use the partial summa-
tion
D kVd(k) =Y kY (M (k) - M(k -1))
k<j k<j
j-1
= JYOM(j) + (k0 = (k + 1)) M (k).
k=1

Finally, by the mean value theorem and upper
bound for M(k),

ji(kv’6 —(k +1)"°)M (k)
k=1

-1 -1
< 0(1)JZ: kY M (k) < 0(1)Jz k¥ (log k)™
k=1 k=1

<0(1)j ¥ (log j) ™.

Combining with the latter results we complete
the proof of Lemma 3. [

Lemma 4. Let v > -1 and / be a slowly vary-
ing function. Then there exists a constant ¢ >0
such that

vlyy s . d-1
> kYI(kyd(k) = ¢ () (log j) .
k<j
Proof of Lemma 4. We choose a number

§>0 and a slowly varying function / such that
v+8>0 and

D) I(x)/1(x) > 1, x —> o
2) x°I(x) is nondecreasing.
Such a function /

Theorem 1.5.4].
Then, for some constants ¢’ >0 and ¢" > ¢/,

3 kVikdk) = ¢S k¥i(k)d (k)

k<) k<)
> i)Y kv (k) 2 ¢ PGS kY d(k).

k<j k<j

exists in view of [20,

Finally, for some ¢" >0,

S kYVd(k) =Y k(M (k) - M(k -1))

k<j k<j

=JVM@)+ ji(km —(k+1)*"*)M (k)
k=1

> jv+8M(j) > ijv+8+l(log j)d_l.

by the upper bound for M (j). Combining with the
latter result we complete the proof of Lemma 3.0

Conclusions

Empirical versions of Hsu-Robbins-Baum-Katz
series is an important subject in the theory of complete
convergence. The Hsu-Robbins-Baum-Katz series are
mathematical expectations of their empirical versions
and require stronger conditions for the convergence.
The conditions for the almost sure convergence of
empirical versions are known only for a limited class
of weights. We extend considerably the class of weights
and provide sufficient conditions for the almost sure
convergence. These sufficient conditions coincide with
the necessary conditions in many cases.
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Empirical versions may serve as candidates for
estimators of unknown parameters constructed from
observations. In the case of constant weights, one ob-
tains an estimator of the variance. The advantage of
such estimators is that they are constructed from a
binary sequence and are easy to calculate (this is im-
portant if the data is big). A disadvantage of such es-
timators is that they require an infinite sequence of
observations (on the othe hand, one can consider an

approximate estimator constructed from a finite
number of observations). One also has to mention
that the consistency of estimators constructed from
empirical versions of Hsu—Robbins—Baum—Katz se-
ries is known only for the convergence in distribu-
tion. Therefore an actual problem in studying statisti-
cal properties of Hsu—Robbins—Baum—Katz estima-
tors is to obtain the consistency for other types of
convergence.
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O.l. Knecos, Y. WragTmionnep

ICHYBAHHA MOMEHTIB EMMIPUYHUX BEPCIN PALIB CIOA-POBBIHCA-BAYMA-KALIA

Mpo6nematuka. Mu BMBYaAEMO Tak 3BaHy MOBHY 306iXHiCTb emnipuyHux aHanoriB pagiB Cios—Po66iHca Ta Bayma—Katua, ski €
OCHOBHMM 06’€KTOM NS AOCAIAXEHb Y KNacW4Hil Teopii MOBHOT 36GiXHOCTI.

MeTa pocnigkeHHs. 3HaXO4XKeHHs1 HEOOXIAHNX Ta OOCTaTHIX YMOB ANns 36DKHOCTI Maike HaneBHO eMMipUYHMX aHanoriB psiaiB
Bayma—Katua. Lii ymoBM BrpaxaloTbCa Yepes yMOBU iCHyBaHHS MEBHUX MOMEHTIB BigMnoOBIigHNX BUNAAKOBUX BEMUYMH.

MeToguka peanisauii. [Ins goBefeHHS OCHOBHMX pe3ynbTaTiB BUKOPUCTOBYETbCS HOBUM METOA, OCHOBAHUM HAa BUBYEHHI
3pi3aHnX BUMALKOBUX BENUYUH. BaxnnBow CKNaZoBOK HALLOrO METOAY € AOBEAEHHS OOHAKOBOI NMOBEAIHKM 3BUYaMHUX psaaiB Ta pagis,
SKi BiANOBIAAlOTb 3pi3aHMM BUNAZKOBUM BenuunHam. Hessaaloum Ha 30BHILLHIO CXOXICTb 3BMYaMHWX pagiB bayma—Katua Ta ix
eMNipUYHNX aHanoris, METOAN OTPUMaHHS pe3ynbTaTiB Pi3HATLCS.

Pe3synbTat gocnimxeHHA. 3HanaeHo HeoOXiaHi Ta AOCTaTHI YMOBM ANS iCHYBaHHS CTapLUMX MOMEHTIB AN eMMipUuYHMUX aHarnoris.
OcobnvBy yBary npuaineHo Bunagky KpaTHux cym. Liei Bunagok Bigpi3HAETLCS Big OAHOBUMIPHOMO TUM, LLO NPOCTIp iHAEKCIB HE Mae MoB-
HOro BMopsiAKyBaHHS, i TOMy Byab-sKuii Niaxig 3 BUKOPUCTAHHAM MOMEHTIB NEPLLOro 4OCArHEHHS B LibOMY BUNAAKy He CripaLboBYE.

BucHoBku. Pe3ynbTtati, oTpumaHi B poboTi, MOXYTb CTaTW OCHOBOK AN MOoAanbluMX AOCHIAKEHb eMMipUYHUX aHanoriB, Ski,
CBOEI0 Yepro, MOXHa BUKOPUCTaTW B CTaTUCTUYHUX NpoLiedypax OUIHIOBaHHS HEBIGOMOI Aucnepcii.

KniouyoBi cnoBa: noBHa 36KHICTb CyM He3anexHUX OO4HAKOBO PO3MNOAINEeHUX BUNagKOBMX BENWYMH; eMMipUYHi aHanorn psgis
Cios—Po66iHca Ta bayma—KaTua; kpaTHi cymu; npaBunbHO 3MiHHI BaroBi koedilieHTw.

O.W. Knecos, Y. WtagTmionnep

CYLECTBOBAHVE MOMEHTOB 3MMUPUYECKW/X BEPCUI PANOB CHOA-POBEMHCA-BAYMA-KALIA

Mpo6nemaTuka. Mbl u3yyaem Tak Ha3blBaeMyto MOSHYO CXOAMMOCTb aMNupuYecknx aHanoros psigos Ciosi—Po66buHca n bayma—
KaTua, koTopble SBMNAOTCA OCHOBHBIM 0O LEKTOM ANS UCCNEAOBaHUIA B KIAaCCUYECKOW TEOPUM MOJTHOW CXOAMMOCTHU.

Llenb nccnepoBanusn. Llensio nccnefoBaHnin ABNSETCS HaXoxAeHWe HeobXoANMBIX U [OCTATOYHbIX YCIOBUIA AN CXOAWMOCTH
NMoYTW HaBepHsika aMNUpUYecknx aHanoros psipoB bayma—KaTua. 3Tu ycnosus BbipaxaloTcsi Yepes yCrnoBusl CyLLECTBOBaHWUSA onpeae-
NEHHbIX MOMEHTOB COOTBETCTBYIOLLMX CyYalHbIX BEMUYMH.

MeToauka peanusaumn. [Ins gokasatenbCTBa OCHOBHBIX Pe3ynbTaToB UCMOMb3yeTCs HOBbLIN METOA, OCHOBAHHBIN Ha M3y4YeHun
Cpe3aHHbIX CryyariHbIX BENUYMH. BaxHon cocTaBnsiowen Hawero Metoga sIBMseTCs AOBeAeHVEe OOVHAKOBOro noBedeHUst O0BblYHbIX
PSAOB M PSAOB, KOTOPblE COOTBETCTBYIOT CPEe3aHHbIM CryYalHbIM BenMynMHam. HecmMoTps Ha BHellHee CXOACTBO OObIYHbIX psfaoB bay-
ma—KaTtua 1 ux amMnmpuyecknx aHanoros, METOAbLI MOMyYEHNs pe3ynbTaToB OTNINYAIOTCS.

Pe3ynbTaTbl uccnegoBaHus. B pabote HangeHbl HeOOXoAMMblE U OOCTATOYHbIE YCNOBUS Afsi CyLEeCTBOBaHMSA CTapLuMx Mo-
MEHTOB ANs aMnupunyecknx aHanoros. Ocoboe BHUMaHWe yaeneHo crny4valo KpaTHbIX CyMM. OTOT Cryyalt OTMYaeTcs OT OfHOMEPHOro
TeM, 4TO NPOCTPAHCTBO UHAEKCOB He MMeeT NONHOro GnaroycTponcTBa, U NO3TOMY NGO NOAXOA C MCMOMb30BaHNEM MOMEHTOB nep-
BOrO JJOCTUXEHUSA He cpabaTbiBaeT B 3TOM criyyae.

BbiBoabl. Pe3ynbTathl, nony4eHHble B paboTe, MOryT CTaTb OCHOBOM ANS AanbHENLINX NCCIIe[0BaHNIA SMMMPUYECKNX aHaroros,
KOTOpbIe, B CBOIO OYepeb, MOXHO UCMOMb30BaTb B CTAaTUCTUHECKUX NpoLeaypax OLEeHUBAHNSA HEN3BECTHOW ANCTEPCUN.

KnioueBble cnoBa: nonHas CXoOAMMOCTb CYMM HE3aBUCHMMbIX OAMHAKOBO pacnpefeneHHbiX CryyYaHblX BEMUYWH; 3MIMpuyeckue
aHarnoru psgoB Cios—Po66uHca n bayma—KaTtua; KpaTHble CyMMbI; MPaBUIbHO NepeMeHHbIe BECOBbIE KO3 MULIMEHTI.

PexomenmoBana Panoto Hapniitna no penaxiii
Gi3UKO-MaTeMaTUIHOIO (HaKYJIbTETY 23 tpaBus 2016 poky
HTYY “KIII”



TEOPETWYHI TA NMPUKNAOHI MPOBNEMU MATEMATUKA

67




